## Multiscale wear modelling of cemented tungsten carbide tools in hard rock drilling

### Dmitry Tkalich<sup>\*</sup>, <u>Vladislav A. Yastrebov</u><sup>\*</sup> Alexandre Kane<sup>•</sup>, Georges Cailletaud<sup>\*</sup>



\*MINES ParisTech, Centre des Matériaux, CNRS UMR, Evry, France



National University of Singapore, Singapore
 Sintef, Trondheim, Norway

Computational Modeling of Complex Materials Across the Scales Paris, France November 8, 2017

## Outline

- Introduction
- Cemented tungsten carbide
- Microstructural model
- Mean-field model
- Tool-rock interaction
- Results
- Conclusion

- Rotary percussive drilling
- Down-the-hole technique
- Gas / oil / geothermal energy



Used photo from Traxxon Ltd.

Tkalich, Yastrebov, Kane, Cailletaud

- Rotary percussive drilling
- Down-the-hole technique
- Gas / oil / geothermal energy
- Cemented tungsten carbide (WC) inserts in a steel crown
- Impact and scratch of a hard rock
- Wear and failure of drilling tools



Used photo from Traxxon Ltd.

Tkalich, Yastrebov, Kane, Cailletaud

- Rotary percussive drilling
- Down-the-hole technique
- Gas / oil / geothermal energy
- Cemented tungsten carbide (WC) inserts in a steel crown
- Impact and scratch of a hard rock
- Wear and failure of drilling tools



Drill-bit designs with spherical and ballistic-shape WC hardmetal inserts

- Rotary percussive drilling
- Down-the-hole technique
- Gas / oil / geothermal energy
- Cemented tungsten carbide (WC) inserts in a steel crown
- Impact and scratch of a hard rock
- Wear and failure of drilling tools









WC hardmetal insert and different microstructure

- Rotary percussive drilling
- Down-the-hole technique
- Gas / oil / geothermal energy
- Cemented tungsten carbide (WC) inserts in a steel crown
- Impact and scratch of a hard rock
- Wear and failure of drilling tools



Microstructure

- Rotary percussive drilling
- Down-the-hole technique
- Gas / oil / geothermal energy
- Cemented tungsten carbide (WC) inserts in a steel crown
- Impact and scratch of a hard rock
- Wear and failure of drilling tools



Microstructure WC grains binded by binder (Co here)

- Rotary percussive drilling
- Down-the-hole technique
- Gas / oil / geothermal energy
- Cemented tungsten carbide (WC) inserts in a steel crown
- Impact and scratch of a hard rock
- Wear and failure of drilling tools



- Rotary percussive drilling
- Down-the-hole technique
- Gas / oil / geothermal energy
- Cemented tungsten carbide (WC) inserts in a steel crown
- Impact and scratch of a hard rock
- Wear and failure of drilling tools



- Rotary percussive drilling
- Down-the-hole technique
- Gas / oil / geothermal energy
- Cemented tungsten carbide (WC) inserts in a steel crown
- Impact and scratch of a hard rock
- Wear and failure of drilling tools



**Objective:** understand better the relationship between the wear resistance of WC hardmetals and its composition

- Rotary percussive drilling
- Down-the-hole technique
- Gas / oil / geothermal energy
- Cemented tungsten carbide (WC) inserts in a steel crown
- Impact and scratch of a hard rock
- Wear and failure of drilling tools



**Objective:** estimate *quantitatively* microstructural deformation mechanisms in WC hardmetals during hard rock drilling



Hard Metal

## VS

# Hard Rock

Tkalich, Yastrebov, Kane, Cailletaud



## KURU ARØNITE

Tkalich, Yastrebov, Kane, Cailletaud

## Material: cemented tungsten carbide

#### Main characteristics

- Brittle WC
- Ductile binder (Co, Ni, Fe)
- High hardness and wear resistance
- Very high melting point of WC prevents abrasive wear



Microstructure WC grains binded by binder (Co here)

## Material: cemented tungsten carbide

#### Main characteristics

- Brittle WC
- Ductile binder (Co, Ni, Fe)
- High hardness and wear resistance
- Very high melting point of WC prevents abrasive wear

## Microscopic mechanisms leading to macroscopic wear

- Fragmentation of WC grains
- Binder lost
- Tribofilm debonding with grains







Wear mechanisms

## Material: cemented tungsten carbide

#### Main characteristics

- Brittle WC
- Ductile binder (Co, Ni, Fe)
- High hardness and wear resistance
- Very high melting point of WC prevents abrasive wear

#### Microscopic mechanisms leading to macroscopic wear

- Fragmentation of WC grains
- Binder lost
- **Tribofilm** debonding with grains



SEM showing a tribofilm formed after 80m drilling in hard rock<sup>[1]</sup>

[1] Tkalich et al, Wear 386-387 (2017)

#### Physics

- Linear dimensions of the binder "quasi crystals" ≈ 10d<sub>wc</sub>
- Cohesion WC/WC and WC/binder
- Anisotropic WC grains (hcp)

#### 2D model

- Outlined SEM images converted to mesh microstructure
- Perfect interfaces
- Isotropic WC and binder
- Von Mises plasticity for the binder
- Non-associated pressure dependent plasticity for WC (Drucker-Prager)

[1] Tkalich, Cailletaud, Yastrebov, Kane, Mech Mater 105 (2017)



SEM image

#### Physics

- Linear dimensions of the binder "quasi crystals" ≈ 10d<sub>wc</sub>
- Cohesion WC/WC and WC/binder
- Anisotropic WC grains (hcp)

#### 2D model

- Outlined SEM images converted to mesh microstructure
- Perfect interfaces
- Isotropic WC and binder
- Von Mises plasticity for the binder
- Non-associated pressure dependent plasticity for WC (Drucker-Prager)



Outlined SEM image, CAD model

#### Physics

- Linear dimensions of the binder "quasi crystals"  $\approx 10d_{WC}$
- Cohesion WC/WC and WC/binder
- Anisotropic WC grains (hcp)

#### 2D model

- Outlined SEM images converted to mesh microstructure
- Perfect interfaces
- Isotropic WC and binder
- Von Mises plasticity for the binder
- Non-associated pressure dependent plasticity for WC (Drucker-Prager)

[1] Tkalich, Cailletaud, Yastrebov, Kane, Mech Mater 105 (2017)



FE mesh

#### Physics

- Linear dimensions of the binder "quasi crystals"  $\approx 10d_{WC}$
- Cohesion WC/WC and WC/binder
- Anisotropic WC grains (hcp)

#### 2D model

- Outlined SEM images converted to mesh microstructure
- Perfect interfaces
- Isotropic WC and binder
- Von Mises plasticity for the binder
- Non-associated pressure dependent plasticity for WC (Drucker-Prager)

[1] Tkalich, Cailletaud, Yastrebov, Kane, Mech Mater 105 (2017)



FE mesh

#### Pure shear loading



#### Pure shear loading



## Pure shear loading





Joint probability density in von Mises – Pressure space  $Pr(\sigma_{vM}, P)$ 

#### [1] Tkalich, Cailletaud, Yastrebov, Kane, Mech Mater 105 (2017)

Tkalich, Yastrebov, Kane, Cailletaud

## It's only 2D ...

#### Microstructural model

- Generate Voronoi tesselation (voro++<sup>[1]</sup>)
- Every Voronoi grain is cut by randomly oriented planes<sup>[2]</sup>
- The smaller cut parts become the binder, the rest remains the WC
- Parameters:
  - (1) number of cuts
  - (2) binder volume fraction



Voronoi grains

[1] Chris Rycroft math.lbl.gov/voro++/

#### Microstructural model

- Generate Voronoi tesselation (voro++<sup>[1]</sup>)
- Every Voronoi grain is cut by randomly oriented planes<sup>[2]</sup>
- The smaller cut parts become the binder, the rest remains the WC
- Parameters:
  - (1) number of cuts
  - (2) binder volume fraction



#### Example in 2D Randomly oriented cuts

[1] Chris Rycroft math.lbl.gov/voro++/

#### Microstructural model

- Generate Voronoi tesselation (voro++<sup>[1]</sup>)
- Every Voronoi grain is cut by randomly oriented planes<sup>[2]</sup>
- The smaller cut parts become the binder, the rest remains the WC
- Parameters:
  - (1) number of cuts
  - (2) binder volume fraction



#### Example in 2D Randomly oriented cuts

[1] Chris Rycroft math.lbl.gov/voro++/

#### Microstructural model

- Generate Voronoi tesselation (voro++<sup>[1]</sup>)
- Every Voronoi grain is cut by randomly oriented planes<sup>[2]</sup>
- The smaller cut parts become the binder, the rest remains the WC
- Parameters:
  - (1) number of cuts
  - (2) binder volume fraction



#### Example in 2D Randomly oriented cuts

[1] Chris Rycroft math.lbl.gov/voro++/

#### Microstructural model

- Generate Voronoi tesselation (voro++<sup>[1]</sup>)
- Every Voronoi grain is cut by randomly oriented planes<sup>[2]</sup>
- The smaller cut parts become the binder, the rest remains the WC
- Parameters:
  - (1) number of cuts
  - (2) binder volume fraction



#### Example in 2D Randomly oriented cuts

[1] Chris Rycroft math.lbl.gov/voro++/

#### Microstructural model

- Generate Voronoi tesselation (voro++<sup>[1]</sup>)
- Every Voronoi grain is cut by randomly oriented planes<sup>[2]</sup>
- The smaller cut parts become the binder, the rest remains the WC
- Parameters:
  - (1) number of cuts
  - (2) binder volume fraction



Example in 2D Randomly oriented cuts

[1] Chris Rycroft math.lbl.gov/voro++/

#### Microstructural model

- Generate Voronoi tesselation (voro++<sup>[1]</sup>)
- Every Voronoi grain is cut by randomly oriented planes<sup>[2]</sup>
- The smaller cut parts become the binder, the rest remains the WC
- Parameters:
  - (1) number of cuts
  - (2) binder volume fraction



Binder phase

[1] Chris Rycroft math.lbl.gov/voro++/

#### Microstructural model

- Generate Voronoi tesselation (voro++<sup>[1]</sup>)
- Every Voronoi grain is cut by randomly oriented planes<sup>[2]</sup>
- The smaller cut parts become the binder, the rest remains the WC
- Parameters:
  - (1) number of cuts
  - (2) binder volume fraction



WC grains

[1] Chris Rycroft math.lbl.gov/voro++/

#### Microstructural model

- Generate Voronoi tesselation (voro++<sup>[1]</sup>)
- Every Voronoi grain is cut by randomly oriented planes<sup>[2]</sup>
- The smaller cut parts become the binder, the rest remains the WC
- Parameters:
  - (1) number of cuts
  - (2) binder volume fraction



Finite element mesh

[1] Chris Rycroft math.lbl.gov/voro++/

## Microstructural mechanical model: 3D examples





WC/Co microstructure (SEM)

WC/Co artificial microstructure

2500 grains

## Microstructural mechanical model: 3D examples





WC/Co microstructure (SEM)

WC/Co artificial microstructure

30 000 grains

## Mean-field model

• Notations: 
$$\underline{\underline{E}} = \langle \underline{\underline{\varepsilon}} \rangle, \quad \underline{\underline{\Sigma}} = \langle \underline{\underline{\sigma}} \rangle \quad \text{with} \quad \langle \bullet \rangle = \frac{1}{V} \int_{V} \bullet dV$$

- Effective elastic tensor  $\sum_{eff}$
- Strain decomposition: global  $\underline{\underline{E}} = \underline{C}_{eff}^{-1} : \underline{\underline{\Sigma}} + \underline{\underline{E}}^p$ , local  $\underline{\underline{\varepsilon}}_i = \underline{C}_i^{-1} : \underline{\underline{\sigma}}_i + \underline{\underline{\varepsilon}}^p$

• Eshelby tensor<sup>[1]</sup> 
$$S = \frac{1}{15(1 - v_{\text{eff}})} \left[ (5v_{\text{eff}} - 1)\underline{I} \otimes \underline{I} + 2(4 - 5v_{\text{eff}})\underline{I} \right]$$
  
with  $\underline{I} \sim \delta_i^j$ ,  $\underline{I} \sim \frac{1}{2} (\delta_i^k \delta_j^l + \delta_i^l \delta_j^k)$ 

- Iterative procedure to identify the effective elastic tensor<sup>[2]</sup>  $\sum_{i=1}^{k+1} \sum_{i=1}^{k} f_i \sum_{i=1}^{k} \sum_{i=1}^{k} \sum_{i=1}^{k} \left( \sum_{i=1}^{k-1} \sum_{i=1}^{k} \sum_{i=1}^{k} \sum_{i=1}^{k-1} \sum_{i=$
- Stress in phases:  $\underline{\underline{\sigma}}_{i} = \underbrace{A}_{i} : \underline{\underline{\Sigma}} + \underbrace{A}_{i} : \underbrace{C}^{*} : (\underbrace{\beta}_{\underline{\underline{\sigma}}} \underbrace{\beta}_{\underline{\underline{\sigma}}_{i}})$  with  $\underline{C}^{*} = \underbrace{C}_{\text{eff}} : (\underline{I} - \underline{S})$  and  $\underbrace{A}_{i} = \left[\underbrace{S}_{\underline{\underline{S}}} + \underbrace{C}^{*} : \underbrace{C}_{i}^{-1}\right]^{-1}$
- Accommodation tensors<sup>[3,4]</sup>  $\underline{\beta}$  with evolution

$$\dot{\underline{\beta}}_{\underline{=}i} = \underbrace{\underline{\dot{\varepsilon}}_{i}^{p}}_{\underline{=}i} - ||\underbrace{\underline{\dot{\varepsilon}}_{i}^{p}}_{\underline{=}i}|| \left( D_{i}^{s} \underbrace{\underline{\beta}_{\underline{=}i}^{sp}}_{\underline{i}} \underbrace{\underline{I}}_{\underline{=}i} + D_{i}^{dev} \underbrace{\underline{\beta}_{dev}}_{\underline{=}i} \right)$$

[1] Eshelby. Proc Royal Soc L: A 241 (1957)
 [3] Cailletaud, Pilvin. Rev Eur Elem Fin 3 (1994)

[2] Kröner. J Mech Phys Solids 25 (1977)

(1994) [4] Cailletaud, Coudon. Ch. in Scale Transition Rules Applied to

Crysteh Plasticity (2015)he, Cailletaud

CMCS 2017

38/60

## Mean-field model

• Notations: 
$$\underline{\underline{E}} = \langle \underline{\underline{\varepsilon}} \rangle, \quad \underline{\underline{\Sigma}} = \langle \underline{\underline{\sigma}} \rangle \quad \text{with} \quad \langle \bullet \rangle = \frac{1}{V} \int_{V} \bullet dV$$

- Effective elastic tensor  $\sum_{eff}$
- Strain decomposition: global  $\underline{\underline{E}} = \underline{C}_{eff}^{-1} : \underline{\underline{\Sigma}} + \underline{\underline{E}}^p$ , local  $\underline{\underline{\varepsilon}}_i = \underline{C}_i^{-1} : \underline{\underline{\sigma}}_i + \underline{\underline{\varepsilon}}_i^p$

• Eshelby tensor<sup>[1]</sup> 
$$S = \frac{1}{15(1 - v_{\text{eff}})} \left[ (5v_{\text{eff}} - 1)\underline{I} \otimes \underline{I} + 2(4 - 5v_{\text{eff}})\underline{I} \right]$$
  
with  $\underline{I} \sim \delta_i^j$ ,  $\underline{I} \sim \frac{1}{2} (\delta_i^k \delta_j^l + \delta_i^l \delta_j^k)$ 

- Iterative procedure to identify the effective elastic tensor<sup>[2]</sup>  $\sum_{i=1}^{k+1} \sum_{i=1}^{k} f_i \sum_{i=1}^{k} \sum_{i=1}^{k} \sum_{i=1}^{k} \left[ \sum_{i=1}^{k} \sum_{i=1}^{$
- Stress in phases:  $\underline{\underline{\sigma}}_{i} = \underline{A}_{i} : \underline{\underline{\Sigma}} + \underline{A}_{i} : \underline{C}^{*} : (\underline{\beta} \underline{\beta}_{i})$  with  $\underline{C}^{*} = \underline{C}_{\text{eff}} : (\underline{I} - \underline{S})$  and  $\underline{A}_{i} = \begin{bmatrix} \underline{S}_{i} + \underline{C}^{*} : \underline{C}_{i}^{-1} \end{bmatrix}^{-1}$
- Accommodation tensors<sup>[3,4]</sup>  $\underline{\beta}$  with evolution

$$\dot{\underline{\beta}}_{=i} = \underbrace{\dot{\underline{\varepsilon}}_{i}^{p}}_{i} - \|\underbrace{\underline{\dot{\varepsilon}}_{i}^{p}}_{i}\| \left( D_{i}^{s} \underbrace{\underline{\beta}_{i}^{sp}}_{=i} \underbrace{\underline{I}} + \underbrace{D_{i}^{dev}}_{i} \underbrace{\underline{\beta}_{dev}}_{=i} \right) - \text{ for each phase (WC and binder)}$$

 [1] Eshelby. Proc Royal Soc L: A 241 (1957)
 [2] Kröner. J Mech Phys Solids 25 (1977)

 [3] Cailletaud, Pilvin. Rev Eur Elem Fin 3 (1994)
 [4] Cailletaud, Coudon. Ch. in Scale Transition Rules Applied to

 ©FxstlehPlasticitydQQU5he, Cailletaud
 CMCS 2017
 39/60





#### Deformation curves

Elastic limit is determined at the point when the plastic strain p > 0.01 %, where  $p = \sqrt{\frac{2}{3}\underline{\underline{E}}^p} : \underline{\underline{E}}^p$  and  $\underline{\underline{E}}^p = \underline{\underline{E}} - \underline{\underline{C}}_{eff} : \underline{\underline{\Sigma}}$ 

Tkalich, Yastrebov, Kane, Cailletaud



Yield surface

Elastic limit is determined at the point when the plastic strain p > 0.01 %, where  $p = \sqrt{\frac{2}{3}\underline{\underline{E}}^p : \underline{\underline{E}}^p}$  and  $\underline{\underline{E}}^p = \underline{\underline{E}} - \underline{\underline{C}}_{eff} : \underline{\underline{\Sigma}}$ 

## Simulation of the tool-rock interaction

- Quasi-static FEA
- Elastic rock cylinder E = 79 GPa, v = 0.26 (Kuru granite<sup>[1]</sup>)
- Frictional (lubricated) contact
   μ = 0.3
- Oblique impacts at different angles
- Every Gauss point integrates the calibrated mean-field β-model

[1] Hokka et al, Int J Impact Eng 91 (2016)



## Simulation of the tool-rock interaction





#### Normal impact

#### Oblique impact at $\varphi = \pi/12$



## Representative loading paths $\sigma_{ij}(t)$



Point 2.



Point 1.



#### Point 2.

#### Accumulated plastic strain in the binder and WC

normal impact

oblique impact



#### Point 1.

#### Accumulated plastic strain in the binder and WC

#### normal impact

oblique impact



## Wear at drill bit inserts



## Wear at drill bit inserts



## Wear at drill bit inserts



## Conclusion: recall of methodology

#### Micro

- 1 Construct FE RVE
- 2 FE RVE: proportional loadings
- 3 Calibration of the mean field β-model

#### Macro

- 4 FE structural simulation with the embedded  $\beta$ -model
- 5 Extract near-surface representative loading paths

#### Micro

6 FE RVE: representative loadings



- WC grain anisotropy
- Residual stresses due to sintering<sup>[1]</sup>
- Binder's loose due to melting (coupled thermo-mechanical model)
- Bore-hole's floor topography
- WC/WC decohesion

 Krawitz, Reichel, Hitterman. Mater Sci Eng A119 (1989)



2.5D microstructure Spatial and probability distribution of pressure after sintering from 800 to 20 °C.

Tkalich, Yastrebov, Kane, Cailletaud

- WC grain anisotropy
- Residual stresses due to sintering<sup>[1]</sup>
- Binder's loose due to melting (coupled thermo-mechanical model)
- Bore-hole's floor topography
- WC/WC decohesion

 Krawitz, Reichel, Hitterman. Mater Sci Eng A119 (1989)



2.5D microstructure Probability distribution after subsequent loading

- WC grain anisotropy
- Residual stresses due to sintering<sup>[1]</sup>
- Binder's loose due to melting (coupled thermo-mechanical model)
- Bore-hole's floor topography
- WC/WC decohesion

 Krawitz, Reichel, Hitterman. Mater Sci Eng A119 (1989)



Crater in Kuru granite after a single impact<sup>[2]</sup>

[2] Tkalich et al, Wear 386-387 (2017)

Tkalich, Yastrebov, Kane, Cailletaud

- WC grain anisotropy
- Residual stresses due to sintering<sup>[1]</sup>
- Binder's loose due to melting (coupled thermo-mechanical model)
- Bore-hole's floor topography
- WC/WC decohesion

 Krawitz, Reichel, Hitterman. Mater Sci Eng A119 (1989)



Rigid rock asperity impacting WC hardmetal

- WC grain anisotropy
- Residual stresses due to sintering<sup>[1]</sup>
- Binder's loose due to melting (coupled thermo-mechanical model)
- Bore-hole's floor topography
- WC/WC decohesion

 Krawitz, Reichel, Hitterman. Mater Sci Eng A119 (1989)



2D simulation of oblique rock asperity impact of WC hardmetal microstructure Account for the effect of weak WC/WC interfaces (cohezive zone model)

## Thank you for you attention!

## Dmitry Tkalich<sup>\*</sup>, <u>Vladislav A. Yastrebov</u><sup>\*</sup> Alexandre Kane<sup>•</sup>, Georges Cailletaud<sup>\*</sup>



\* MINES ParisTech, Centre des Matériaux, CNRS UMR, Evry, France



National University of Singapore, Singapore
 Sintef, Trondheim, Norway

@ CMCS, Paris, France November 8, 2017