Slip propagation at interfaces with a non-uniform contact pressure distribution

Vladislav A. Yastrebov

MINES ParisTech, PSL Research University, Centre des Matériaux, CNRS, Evry, France

CECAM Workshop "Modeling tribology: friction and fracture across scales" Lausanne, Switzerland January 29, 2019

Outline

- Introduction
- Parabolic pressure valley
- Localized pressure valley
- Conclusions

Introduction

- Simplified/naive vision of friction
- As we know, in reality is not that simple^[1,2]

T.H. Heaton, 1990. Evidence for and implications of self-healing pulses of slip in earthquake rupture. Phys. Earth Planet. Inter.
 O. Ben-David, G. Cohen, J. Fineberg The dynamics of the onset of frictional slip. Science

- Simplified/naive vision of friction
- As we know, in reality is not that simple^[1,2]
- \bullet Simulation of the sliding onset $^{\scriptscriptstyle [3]}\ldots$

[1] T.H. Heaton, 1990. Evidence for and implications of self-healing pulses of slip in earthquake rupture. Phys. Earth Planet. Inter.

[2] O. Ben-David, G. Cohen, J. Fineberg The dynamics of the onset of frictional slip. Science

- Simplified/naive vision of friction
- As we know, in reality is not that simple^[1,2]
- \bullet Simulation of the sliding onset $^{\scriptscriptstyle [3]}\ldots$

[1] T.H. Heaton, 1990. Evidence for and implications of self-healing pulses of slip in earthquake rupture. Phys. Earth Planet. Inter.

[2] O. Ben-David, G. Cohen, J. Fineberg The dynamics of the onset of frictional slip. Science

- Simplified/naive vision of friction
- As we know, in reality is not that simple^[1,2]
- \bullet Simulation of the sliding onset $^{\scriptscriptstyle [3]}\ldots$

[1] T.H. Heaton, 1990. Evidence for and implications of self-healing pulses of slip in earthquake rupture. Phys. Earth Planet. Inter.

[2] O. Ben-David, G. Cohen, J. Fineberg The dynamics of the onset of frictional slip. Science

- Simplified/naive vision of friction
- As we know, in reality is not that simple^[1,2]
- \bullet Simulation of the sliding onset $^{\scriptscriptstyle [3]}\ldots$

[1] T.H. Heaton, 1990. Evidence for and implications of self-healing pulses of slip in earthquake rupture. Phys. Earth Planet. Inter.

[2] O. Ben-David, G. Cohen, J. Fineberg The dynamics of the onset of frictional slip. Science

- Simplified/naive vision of friction
- As we know, in reality is not that simple^[1,2]
- \bullet Simulation of the sliding onset $^{\scriptscriptstyle [3]}\ldots$

[1] T.H. Heaton, 1990. Evidence for and implications of self-healing pulses of slip in earthquake rupture. Phys. Earth Planet. Inter.

[2] O. Ben-David, G. Cohen, J. Fineberg The dynamics of the onset of frictional slip. Science

- Simplified/naive vision of friction
- As we know, in reality is not that simple^[1,2]
- \bullet Simulation of the sliding onset $^{\scriptscriptstyle [3]}\ldots$

[1] T.H. Heaton, 1990. Evidence for and implications of self-healing pulses of slip in earthquake rupture. Phys. Earth Planet. Inter-

[2] O. Ben-David, G. Cohen, J. Fineberg The dynamics of the onset of frictional slip. Science

- Simplified/naive vision of friction
- As we know, in reality is not that simple^[1,2]
- \bullet Simulation of the sliding onset $^{\scriptscriptstyle [3]}\ldots$

[1] T.H. Heaton, 1990. Evidence for and implications of self-healing pulses of slip in earthquake rupture. Phys. Earth Planet. Inter.

[2] O. Ben-David, G. Cohen, J. Fineberg The dynamics of the onset of frictional slip. Science

- Simplified/naive vision of friction
- As we know, in reality is not that simple^[1,2]
- \bullet Simulation of the sliding onset $^{\scriptscriptstyle [3]}\ldots$

[1] T.H. Heaton, 1990. Evidence for and implications of self-healing pulses of slip in earthquake rupture. Phys. Earth Planet. Inter-

[2] O. Ben-David, G. Cohen, J. Fineberg The dynamics of the onset of frictional slip. Science

- Simplified/naive vision of friction
- As we know, in reality is not that simple^[1,2]
- \bullet Simulation of the sliding onset $^{\scriptscriptstyle [3]}\ldots$

[1] T.H. Heaton, 1990. Evidence for and implications of self-healing pulses of slip in earthquake rupture. Phys. Earth Planet. Inter.

[2] O. Ben-David, G. Cohen, J. Fineberg The dynamics of the onset of frictional slip. Science

- Simplified/naive vision of friction
- As we know, in reality is not that simple^[1,2]
- \bullet Simulation of the sliding onset $^{\scriptscriptstyle [3]}\ldots$

[1] T.H. Heaton, 1990. Evidence for and implications of self-healing pulses of slip in earthquake rupture. Phys. Earth Planet. Inter-

- [2] O. Ben-David, G. Cohen, J. Fineberg The dynamics of the onset of frictional slip. Science
- [3] D.S. Kammer, V.A. Yastrebov, P. Spijker, J.F. Molinari, 2012, On the Propagation of Slip Fronts at Frictional Interfaces, Tribol. Lett.

- Simplified/naive vision of friction
- As we know, in reality is not that simple^[1,2]
- \bullet Simulation of the sliding onset $^{\scriptscriptstyle [3]}\ldots$

[1] T.H. Heaton, 1990. Evidence for and implications of self-healing pulses of slip in earthquake rupture. Phys. Earth Planet. Inter-

- [2] O. Ben-David, G. Cohen, J. Fineberg The dynamics of the onset of frictional slip. Science
- [3] D.S. Kammer, V.A. Yastrebov, P. Spijker, J.F. Molinari, 2012, On the Propagation of Slip Fronts at Frictional Interfaces, Tribol. Lett.

- Simplified/naive vision of friction
- As we know, in reality is not that simple^[1,2]
- \bullet Simulation of the sliding onset $^{\scriptscriptstyle [3]}\ldots$

[1] T.H. Heaton, 1990. Evidence for and implications of self-healing pulses of slip in earthquake rupture. Phys. Earth Planet. Inter.

[2] O. Ben-David, G. Cohen, J. Fineberg The dynamics of the onset of frictional slip. Science

- Simplified/naive vision of friction
- As we know, in reality is not that simple^[1,2]
- \bullet Simulation of the sliding onset $^{\scriptscriptstyle [3]}\ldots$

[1] T.H. Heaton, 1990. Evidence for and implications of self-healing pulses of slip in earthquake rupture. Phys. Earth Planet. Inter-

[2] O. Ben-David, G. Cohen, J. Fineberg The dynamics of the onset of frictional slip. Science

- Simplified/naive vision of friction
- As we know, in reality is not that simple^[1,2]
- Simulation of the sliding onset^[3] ...
- Even if the stress is uniform at the interface^[4-6]

[1] T.H. Heaton, 1990. Evidence for and implications of self-healing pulses of slip in earthquake rupture. Phys. Earth Planet. Inter.

- [2] O. Ben-David, G. Cohen, J. Fineberg The dynamics of the onset of frictional slip. Science
- [3] D.S. Kammer, V.A. Yastrebov, P. Spijker, J.F. Molinari, 2012, On the Propagation of Slip Fronts at Frictional Interfaces, Tribol. Lett.
- [4] J.A.C. Martins, J. Guimaraes, O. Faria, 1995. Dynamic surface solutions in linear elasticity and viscoelasticity with frictional boundary conditions, J. Vib. Acoust.
- [5] G.G. Adams, 1995. Self-excited oscillations of two elastic half-spaces sliding with a constant coefficient of friction, J. Appl. Mech.
- [6] A. Cochard, J.R. Rice, 2000, Fault rupture between dissimilar materials Ill-posedness, regularization, and slip-pulse response, J. Geo. R.
- [7] E.A. Brener, M. Weikamp, R. Spatschek, Y. Bar-Sinai, E. Bouchbinder, 2016. Dynamic instabilities of frictional sliding at a bimaterial interface, JMPS
- [8] V.A. Yastrebov, 2016, Sliding without slipping under Coulomb friction: opening waves and inversion of frictional force, Tribol. Lett.

V.A. Yastrebov | MINES ParisTech, France

Emergence of an opening wave in Coulomb's friction

Emergence of an opening wave in Coulomb's friction law at the interface between an elastic layer and a rigid flat⁽¹⁾

[1] V.A. Yastrebov, 2016, Sliding without slipping under Coulomb friction: opening waves and inversion of frictional force, Tribol. Lett.

Emergence of an opening wave in Coulomb's friction

Emergence of an opening wave in Coulomb's friction law at the interface between an elastic layer and a rigid flat⁽¹⁾

[1] V.A. Yastrebov, 2016, Sliding without slipping under Coulomb friction: opening waves and inversion of frictional force, Tribol. Lett.

Emergence of an opening wave in Coulomb's friction

Emergence of an opening wave in Coulomb's friction law at the interface between an elastic layer and a rigid flat^[1]

[1] V.A. Yastrebov, 2016, Sliding without slipping under Coulomb friction: opening waves and inversion of frictional force, Tribol. Lett.

V.A. Yastrebov | MINES ParisTech, France

Non-uniform contact pressure

- Stability of the sliding depends on the local contact pressure distribution¹ p(x, y)
- Macroscopic scale:

pressure depends on the shape of contacting solids, on loads, pore pressure^[1-3] and material behaviour

Microscopic scale:

pressure depends on roughness and on material behaviour

Macroscopic scale

Microscopic scale

¹More generally, on interface tractions.

Slip weakening friction law

$$f(d) = \begin{cases} f_s - \frac{(f_s - f_k)}{d_c} d, & \text{if } d \le d_c, \\ f_k, & \text{otherwise,} \end{cases}$$

where f_s , f_k are the static and kinetic coefficients of friction, respectively, and d_c is the characteristic slip length.

Simplified form of a more general rate-and-state friction

Problem set-up

- Pressurized σ_{yy}^0 and sheared τ^0 interface between two similar² elastic *E*, *v* half-planes
- Plane strain formulation

²Can be generalized for dissimilar solids [1] J.R. Rice (1988), Elastic Fracture Mechanics Concepts for Interfacial Cracks, J. Appl. Mech. V.A. Yastrebov | MINES ParisTech, France 29/58

Bibliographical remark

Analogy friction-fracture

D.J. Andrews (1976)

* Rupture Propagation With Finite Stress in Antiplane Strain, J. Geophys. Res., 81

Lambert B. Freund (1979)

* The mechanics of dynamic shear crack propagation, J. Geophys. Res., 84

■ James R. Rice (1980)

- * The mechanics of earthquake rupture, chapter in "Physics of Earth's Interior"
- Demir Coker, G. Lykotrafitis, A. J. Rosakis, A. Needleman (2003,2005)
 - * Dynamic crack growth along a polymer composite-Homalite interface, JMPS, 51
 - * Frictional sliding modes along an interface between identical ..., JMPS, 53
- Jay Fineberg et al. (2004, 2010, 2014)
 - * S.M. Rubinstein, G. Cohen, J. Fineberg (2004), Detachment fronts and the onset of dynamic friction, Nature 430
 - * O. Ben-David, G. Cohen, J. Fineberg (2010), The dynamics of the onset of frictional slip, Science 330
 - * I. Svetlizky, J. Fineberg (May 2014), Classical shear cracks drive the onset of dry frictional motion, Nature 509

Bibliographical remark

Analogy friction-fracture

- D.J. Andrews (1976)
 - * Rupture Propagation With Finite Stress in Antiplane Strain, J. Geophys. Res., 81
- Lambert B. Freund (1979)
 - * The mechanics of dynamic shear crack propagation, J. Geophys. Res., 84
- James R. Rice (1980)
 - \star The mechanics of earthquake rupture, chapter in "Physics of Earth's Interior"

Demir Coker, G. Lykotrafitis, A. J. Rosakis, A. Needleman (2003,2005)

- * Dynamic crack growth along a polymer composite-Homalite interface, JMPS, 51
- * Frictional sliding modes along an interface between identical ..., JMPS, 53
- Jay Fineberg et al. (2004, 2010, 2014)
 - * S.M. Rubinstein, G. Cohen, J. Fineberg (2004), Detachment fronts and the onset of dynamic friction, Nature 430
 - * O. Ben-David, G. Cohen, J. Fineberg (2010), The dynamics of the onset of frictional slip, Science 330
 - * I. Svetlizky, J. Fineberg (May 2014), Classical shear cracks drive the onset of dry frictional motion, Nature 509

Fracture, Coker et al. (2003)

Friction, Coker et al. (2005)

Bibliographical remark

Analogy friction-fracture

- D.J. Andrews (1976)
 - * Rupture Propagation With Finite Stress in Antiplane Strain, J. Geophys. Res., 81
- Lambert B. Freund (1979)
 - * The mechanics of dynamic shear crack propagation, J. Geophys. Res., 84
- James R. Rice (1980)
 - * The mechanics of earthquake rupture, chapter in "Physics of Earth's Interior"
- Demir Coker, G. Lykotrafitis, A. J. Rosakis, A. Needleman (2003,2005)
 - * Dynamic crack growth along a polymer composite-Homalite interface, JMPS, 51
 - * Frictional sliding modes along an interface between identical ..., JMPS, 53

Jay Fineberg et al. (2004, 2010, 2014)

- * S.M. Rubinstein, G. Cohen, J. Fineberg (2004), Detachment fronts and the onset of dynamic friction, Nature 430
- * O. Ben-David, G. Cohen, J. Fineberg (2010), The dynamics of the onset of frictional slip, Science 330
- * I. Svetlizky, J. Fineberg (May 2014), Classical shear cracks drive the onset of dry frictional motion, Nature 509

Slip-stability analysis

 Consider situation that slip-weakening zone is localized near slip edges (small scale yielding^[1] assumption)

 $u_{slip}(x) > d_c \text{ in } x \in (-a + \epsilon, a - \epsilon), \quad \epsilon \ll a$

otherwise, see^[2,3]

Critical energy release rate

$$G_c(x) = \frac{1}{2}d_c(f_s - f_k)|\sigma_{yy}(x)|$$

Energy release rate

$$G(a) = \frac{(1 - \nu^2)K_{II}^2(a)}{E}$$

[1] Palmer & Rice, The growth of slip surfaces in the progressive failure of over-consolidated clay, 1973, Proc. Royal Soc. London 332

[2] Campillo & Ionescu, Initiation of antiplane shear instability under slip dependent friction, 1997, J. Geophys. Res. 102

[3] Uenishi & Rice, Universal nucleation length for slip-weakening rupture instability under nonuniform fault loading, 2003, J. Geophys. Res. 108

V.A. Yastrebov | MINES ParisTech, France

Slip-stability analysis II

Stress intensity factor^[1]:

$$K_{II}(a) = \underbrace{\tau_0 \sqrt{\pi a}}_{\text{ambient shear}} - \frac{1}{\sqrt{\pi a}} \int_{-a}^{a} f_k \sigma_{yy}(x) \frac{\sqrt{a+x}}{\sqrt{a-x}} dx$$

residual frictional shear

Introduce function \mathcal{F} :

$$\mathcal{F} = G(a) - G_c(a): \begin{cases} \mathcal{F} > 0, \text{ unstable slip,} \\ \mathcal{F} < 0, \text{ no spontaneous slip} \end{cases}$$

Search stable
$$\frac{\partial \mathcal{F}}{\partial a} < 0$$
 and unstable $\frac{\partial \mathcal{F}}{\partial a} > 0$ roots of $\mathcal{F} = 0$

[1] Erdogan, F., 1962. On the stress distribution in plates with collinear cuts under arbitrary loads, Proc. 4th US Nat. Cong. Appl. Mech. 1.

Model parameters

- Isotropic homogeneous half-spaces in plane strain (typical granite)^[1,2]: Shear modulus $\mu = 30$ GPa, Poisson's ratio $\nu = 0.25$
- Friction parameters:
 - static friction $f_s = 0.8$
 - kinetic friction $f_k = 0.6$
 - weakening distance $d_c = 450 \ \mu m$
- Valley pressure: $\sigma_0 \in [10, 300]$ MPa as pressure ≈ 28 MPa/km × depth

[1] Rummel, F., Alheid, H., Frohn, C., 1978. Dilatancy and fracture induced velocity changes in rock and their relation to frictional sliding. In: Rock Friction and Earthquake Prediction

[2] Uenishi, K., Rice, J. R., 2003. Universal nucleation length for slip-weakening rupture instability under nonuniform fault loading. Journal of Geophysical Research: Solid Earth

Parabolic pressure valley

Stability equation

- Pressure distribution: $\sigma_{yy} = \sigma_0 + \frac{\kappa x^2}{2}$
- Notations $\tau_0 = f_0 \sigma_0$, $\tau_k = f_k \sigma_0$, $\tau_s = f_s \sigma_0$
- Stress intensity factor: $K_{II} = (\tau_0 f_k \sigma_0 f_k \kappa a^2/4) \sqrt{\pi a}$ $K_{II} > 0 \iff a \le 2 \sqrt{(\tau_0 - \tau_k)/f_k \kappa}.$
- Consider a normalized yield function:

$$\frac{2\mathcal{F}}{d_c\sigma_0(f_s-f_k)} = \tilde{G}(a) - \tilde{G}_c(a)$$

Graphical representation

Note, \tilde{G}_{fl} corresponds to a frictionless case.

V.A. Yastrebov | MINES ParisTech, France

Resulting equation and asymptotics

Search for roots of:

$$\tilde{G}(a) - \tilde{G}_c(a) = \frac{2\pi a (1 - \nu^2) [\tau_0 - f_k(\sigma_0 + \kappa a^2/4)]^2}{Ed_c(\tau_s - \tau_k)} - \left(1 + \frac{\kappa a^2}{2\sigma_0}\right) = 0$$

In the limit of a flat stress distribution $\kappa \to 0$, we obtain a unique solution:

$$a_n = \frac{\mu d_c(\tau_s - \tau_k)}{\pi (1 - \nu)(\tau_0 - \tau_k)^2},$$

which is nothing but Andrews' critical nucleation length^[1].
If τ₀ = τ_s, this nucleation length reduces to

$$a_n \Big|_{\tau_0 = \tau_s} \approx \frac{0.3183 \mu d_c}{(1 - \nu)(\tau_s - \tau_k)} < \underbrace{\frac{0.579 \mu d_c}{(1 - \nu)(\tau_s - \tau_k)}}_{\text{from}^{[2]}}$$

- [1] J.D. Andrews, 1976. Rupture Propagation With Finite Stress in Antiplane Strain, J. Geophys. Res., 81
- [2] Uenishi & Rice, 2003. Universal nucleation length for slip-weakening rupture instability under nonuniform fault loading, J. Geophys. Res. 108

V.A. Yastrebov | MINES ParisTech, France

Neglect fifth order term:

$$\frac{2\mathcal{F}}{d_c(\tau_s - \tau_k)} \approx A_1 \tilde{a} - A_2 \tilde{a}^2 - A_3 \tilde{a}^3 - 1 = 0$$

where $\tilde{a} = a/d_c$ and

$$A_{3} = \frac{\pi(1-\nu)f_{k}\kappa d_{c}^{2}(\tau_{0}-\tau_{k})}{2\mu(\tau_{s}-\tau_{k})}, A_{2} = \frac{\kappa d_{c}^{2}}{2\sigma_{0}}, A_{1} = \frac{\pi(1-\nu)(\tau_{0}-\tau_{k})^{2}}{\mu(\tau_{s}-\tau_{k})}$$

Search for $\partial \mathcal{F}/\partial a = 0$, we obtain $A_{1} - 2A_{2}\tilde{a} - 3A_{3}\tilde{a}^{2} = 0$

$$\tilde{a}_t = \frac{\mu(\tau_s - \tau_k)}{3\pi f_k \sigma_0 (1 - \nu)(\tau_0 - \tau_k)} \left[\sqrt{1 + \frac{6\pi^2 f_k (1 - \nu)^2 (\tau_0 - \tau_k)^3}{\mu^2 (f_s - f_k)^2 \kappa d_c^2}} - 1 \right].$$

Normally, it is $\gg 1$

Neglect fifth order term:

$$\frac{2\mathcal{F}}{d_c(\tau_s - \tau_k)} \approx A_1 \tilde{a} - A_2 \tilde{a}^2 - A_3 \tilde{a}^3 - 1 = 0$$

where $\tilde{a} = a/d_c$ and

$$A_{3} = \frac{\pi(1-\nu)f_{k}\kappa d_{c}^{2}(\tau_{0}-\tau_{k})}{2\mu(\tau_{s}-\tau_{k})}, A_{2} = \frac{\kappa d_{c}^{2}}{2\sigma_{0}}, A_{1} = \frac{\pi(1-\nu)(\tau_{0}-\tau_{k})^{2}}{\mu(\tau_{s}-\tau_{k})}$$

Search for $\partial \mathcal{F}/\partial a = 0$, we obtain $A_{1} - 2A_{2}\tilde{a} - 3A_{3}\tilde{a}^{2} = 0$

$$a_t \approx \sqrt{\frac{2(\tau_0 - \tau_k)}{3\kappa f_k}}$$

Neglect fifth order term:

$$\frac{2\mathcal{F}}{d_c(\tau_s - \tau_k)} \approx A_1 \tilde{a} - A_2 \tilde{a}^2 - A_3 \tilde{a}^3 - 1 = 0$$

where $\tilde{a} = a/d_c$ and

$$A_{3} = \frac{\pi(1-\nu)f_{k}\kappa d_{c}^{2}(\tau_{0}-\tau_{k})}{2\mu(\tau_{s}-\tau_{k})}, A_{2} = \frac{\kappa d_{c}^{2}}{2\sigma_{0}}, A_{1} = \frac{\pi(1-\nu)(\tau_{0}-\tau_{k})^{2}}{\mu(\tau_{s}-\tau_{k})}$$

Search for $\partial \mathcal{F} / \partial a = 0$, we obtain $A_1 - 2A_2\tilde{a} - 3A_3\tilde{a}^2 = 0$

$$a_t \approx \sqrt{\frac{2(\tau_0 - \tau_k)}{3\kappa f_k}}$$

• Then the unstable slip ($\mathcal{F}(a_t) > 0$) is possible if:

$$\frac{\sigma_0}{\mu} \gtrsim \left[\frac{3(f_s - f_k)^2}{8\pi^2 f_k} \cdot \frac{\kappa d_c^2}{(1 - \nu)^2 \mu} \cdot \frac{(2f_k + f_0)^2}{(f_0 - f_k)^5}\right]^{1/3}$$

V.A. Yastrebov | MINES ParisTech, France

• Minimal pressure σ_0 needed to have unstable slip

[1] Uenishi & Rice, Universal nucleation length for slip-weakening rupture instability under nonuniform fault loading, 2003, J. Geophys. Res. 108 V.A. Yastreboy | MINES ParisTech, France

Approximate analysis II: arrest length

• Maximum of energy release rate $\partial G/\partial a = 0$:

$$a_{\rm ext} = 2\sqrt{\frac{\sigma_0(f_0 - f_k)}{5\kappa f_k}}$$

- If we assume that this maximum is located on the mid-way between two roots: $a_{\text{ext}} \approx (a_n + a_s)/2$
- Then the arrest length is given by:

$$a_s \approx 4 \sqrt{\frac{\sigma_0(f_0 - f_k)}{5\kappa f_k}} - \frac{(f_s - f_k)d_c}{\pi(1 - \nu)(f_0 - f_k)^2} \cdot \frac{\mu}{\sigma_0}$$

Approximate analysis II: arrest length

 Colours correspond to the region of unstable slip for different pressure curvatures κ

Approximate analysis II: arrest length

 Colours correspond to the region of unstable slip for different pressure curvatures κ

Intermediate conclusions

For a pressure valley:
$$\sigma_{yy} = \sigma_0 + \frac{\kappa x^2}{2}$$

Unstable slip is possible if:

$$\frac{\sigma_0}{\mu} \gtrsim \left[\frac{3(f_s - f_k)^2}{8\pi^2 f_k} \cdot \frac{\kappa d_c^2}{(1 - \nu)^2 \mu} \cdot \frac{(2f_k + f_0)^2}{(f_0 - f_k)^5} \right]^{1/3}$$

0

Unstable slip starts at:

$$a_n \approx \frac{\mu d_c(\tau_s - \tau_k)}{\pi (1 - \nu)(\tau_0 - \tau_k)^2}$$

Unstable slip arrests at:

$$a_{s} \approx 4 \sqrt{\frac{\sigma_{0}(f_{0} - f_{k})}{5\kappa f_{k}} - \frac{(f_{s} - f_{k})d_{c}}{\pi(1 - \nu)(f_{0} - f_{k})^{2}} \cdot \frac{\mu}{\sigma_{0}}}$$

Localized pressure valley

Set-up 2

Pressure distribution:

$$\sigma(x) = \sigma_0 + \begin{cases} 8\Delta\sigma\left(\frac{x}{\lambda}\right)^2 &, \text{ if } |x| \le \lambda/4\\ \Delta\sigma\left(\frac{8|x|}{\lambda} - \frac{8x^2}{\lambda^2} - 1\right) &, \text{ if } \lambda/4 < |x| \le \lambda/2\\ \Delta\sigma &, \text{ if } |x| > \lambda/2, \end{cases}$$

Stress intensity factor

As previously:

$$K_{II}(a) = \tau_0 \sqrt{\pi a} - \frac{1}{\sqrt{\pi a}} \int_{-a}^{a} f_k \sigma_{yy}(x) \frac{\sqrt{a+x}}{\sqrt{a-x}} dx$$

Then

$$K_{II}(a) = \begin{cases} \left\langle \sqrt{\pi a} \tau_0 - J_1(a, a) \right\rangle, & \text{if } a < \lambda/4, \\ \left\langle \sqrt{\pi a} \tau_0 - J_1(\lambda/4, a) - J_2(a, a) \right\rangle, & \text{if } \lambda/4 \le a < \lambda/2, \\ \left\langle \sqrt{\pi a} \tau_0 - J_1(\lambda/4, a) - J_2(\lambda/2, a) - J_3(a, a) \right\rangle, & \text{if } a \ge \lambda/2, \end{cases}$$

$$\begin{split} & \text{where } \langle x \rangle = \max\{0, x\} \\ & J_1(l, a) = \frac{f_k}{\sqrt{\pi a}} \int_{-l}^{l} \left[\sigma_0 + 8\Delta\sigma \left(\frac{x}{\lambda}\right)^2 \right] \frac{\sqrt{a+x}}{\sqrt{a-x}} dx, \\ & J_2(l, a) = \frac{f_k}{\sqrt{\pi a}} \left\{ \int_{-l}^{-\lambda/4} F_2(x, a) dx + \int_{\lambda/4}^{l} F_2(x, a) dx \right\}, \text{ for } \lambda/4 \leq l < \lambda/2, \\ & \text{where } F_2(x, a) = \left[(\sigma_0 - \Delta\sigma) + \frac{8\Delta\sigma}{\lambda} \left(|x| - \frac{x^2}{\lambda} \right) \right] \frac{\sqrt{a+x}}{\sqrt{a-x}}, \\ & J_3(l, a) = \frac{f_k}{\sqrt{\pi a}} \left\{ \int_{-l}^{-\lambda/2} F_3(x, a) dx + \int_{\lambda/2}^{l} F_3(x, a) dx \right\}, \text{ for } l \geq \lambda/2, \text{ with } F_3 = (\sigma_0 + \Delta\sigma) \frac{\sqrt{a+x}}{\sqrt{a-x}}. \end{split}$$

V.A. Yastrebov | MINES ParisTech, France

Stress intensity factor II

$$J_1(a,a) = f_k \sqrt{\pi a} \left(\sigma_0 + 4\Delta \sigma a^2 / \lambda^2 \right),$$
$$J_1(\lambda/4,a) = 2f_k \sqrt{\frac{a}{\pi}} \left[\left(\sigma_0 + \frac{4\Delta \sigma a^2}{\lambda^2} \right) \arcsin\left(\frac{\lambda}{4a}\right) - \frac{\Delta \sigma}{4\lambda} \sqrt{16a^2 - \lambda^2} \right]$$

$$J_{2}(a,a) = 2f_{k}\sqrt{\frac{a}{\pi}} \left[\left(\sigma_{0} - \Delta\sigma \left[1 + 4a^{2}/\lambda^{2}\right]\right) \left(\frac{\pi}{2} - \arcsin\frac{\lambda}{4a}\right) + \frac{7\Delta\sigma}{4\lambda}\sqrt{16a^{2} - \lambda^{2}} \right]$$

$$J_{2}(\lambda/2,a) = 2f_{k}\sqrt{\frac{a}{\pi}} \left[\left(\sigma_{0} - \Delta\sigma \left[1 + 4a^{2}/\lambda^{2}\right]\right) \left(\arcsin\frac{\lambda}{2a} - \arcsin\frac{\lambda}{4a}\right) + \frac{\Delta\sigma}{4\lambda} \left(7\sqrt{16a^{2} - \lambda^{2}} - 12\sqrt{4a^{2} - \lambda^{2}}\right) \right]$$

$$J_{3}(a,a) = 2f_{k}\sqrt{\frac{a}{\pi}} (\sigma_{0} + \Delta\sigma) \left[\frac{\pi}{2} - \arcsin\frac{\lambda}{2a}\right]$$

Stability analysis

• Equating *G* and *G*^{*c*} gives:

$$\frac{2\mathcal{F}}{d_c\sigma_0(f_s - f_k)} = \tilde{G}(a) - \tilde{G}_c(a) = \frac{2(1 - v^2)}{Ed_c\sigma_0(f_s - f_k)} K_{II}^2(a) - \frac{\sigma_{yy}(a)}{\sigma_0} = 0$$

Only numerically solved...

- Different scenarios:
 - No roots
 One root
 - 3 Two roots
 - 4 Three roots

• Equation $G - G_c = 0$ does not have a solution

• Equation $G - G_c = 0$ has one root (ultimately unstable)

• Equation $G - G_c = 0$ has one root (ultimately unstable)

• Equation $G - G_c = 0$ has two roots (ultimately stable)

• Equation $G - G_c = 0$ has three roots (ultimately unstable)

First result

Stress intensity factor

$$K_{II} = \sqrt{\pi a} \tau_0 - J_1(\lambda/4, a) - J_2(\lambda/2, a) - J_3(a, a)$$

It can be shown that for $a/\lambda \gg 1$:

 $J_1(\lambda/4, a) \sim 1/\sqrt{a}, \qquad J_2(\lambda/2, a) \sim 1/\sqrt{a}$

• Then for $a/\lambda \gg 1$:

$$K_{II} = \sqrt{\pi a} \left[f_0 \sigma_0 - f_k (\sigma_0 + \Delta \sigma) \right]$$

Readily the condition for ultimately unstable slip can be derived:

$$\frac{\Delta\sigma}{\sigma_0} \le \frac{f_0 - f_k}{f_k} \qquad (**)$$

The corresponding slip length

$$a_{u} = \frac{\mu d_{c} (f_{s} - f_{k}) (1 + \Delta \sigma / \sigma_{0})}{\pi \sigma_{0} (1 - \nu) [f_{0} - f_{k} (1 + \Delta \sigma / \sigma_{0})]^{2}} \qquad (*)$$

V.A. Yastrebov | MINES ParisTech, France

Effect of the pressure-valley depth $\Delta \sigma$

Stability map for $\sigma_0 = 10$ MPa, $f_0 = 1.2f_k$, $f_k = 0.6$, $f_s = 0.8$

Effect of the minimal pressure σ_0

Stability map for $\sigma_0 = \{3, 5, 7, 15\}$ MPa, $f_0 = 1.2f_k$, $f_k = 0.6$, $f_s = 0.8$

Perspective

• The slip length given by

$$a_{u} = \frac{\mu d_{c} (f_{s} - f_{k}) (1 + \Delta \sigma / \sigma_{0})}{\pi \sigma_{0} (1 - \nu) [f_{0} - f_{k} (1 + \Delta \sigma / \sigma_{0})]^{2}}$$

represents only the upper limit for the ultimately unstable slip length

• For $\Delta \sigma / \sigma_0 \rightarrow (f_0 - f_k) / f_k$), slip length a_u diverges as

$$a_u \sim [f_0 - f_k(1 + \Delta \sigma / \sigma_0)]^{-2}$$

Need a more accurate expression, which requires analysis of

$$\frac{\partial K_{II}}{\partial a} = 0$$

where
$$K_{II}(a) = \left\langle \sqrt{\pi a \tau_0} - J_1(\lambda/4, a) - J_2(\lambda/2, a) - J_3(a, a) \right\rangle$$

- Some quantitative (approximate) results were obtained for two cases of non-uniform pressure distributions
 - 1 parabolic
 - 2 localized pressure valley

- Is unstable slip possible? *answered for parabola*
- When does the unstable slip arrest? *answered for parabola*
- What is the necessary condition for the slip to be ultimately unstable? *answered for valley*

Thank you for your attention!