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Sliding onset

e Simplified/naive vision of friction
e As we know, in reality is not that simple"”
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[1] T.H. Heaton, 1990. Evidence for and implications of self-healing pulses of slip in earthquake rupture. Phys. Earth Planet. Inter.
[2] O. Ben-David, G. Cohen, J. Fineberg The dynamics of the onset of frictional slip. Science
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Sliding onset

e Simplified/naive vision of friction

e As we know, in reality is not that simple"”

e Simulation of the sliding onset™ . ..

e Even if the stress is uniform at the interface*
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[3] D.S. Kammer, V.A. Yastrebov, P. Spijker, ].F. Molinari, 2012, On the Propagation of Slip Fronts at Frictional Interfaces, Tribol. Lett.
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[6] A. Cochard, J.R. Rice, 2000, Fault rupture between dissimilar materials Ill-posedness, regularization, and slip-pulse response, J. Geo. R.
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Emergence of an opening wave in Coulomb’s friction

Emergence of an opening wave in Coulomb’s friction law at the

interface between an elastic layer and a rigid flat”

Stick Separation : Stick

Stick Separation Stick

[1] V.A. Yastrebov, 2016, Sliding without slipping under Coulomb friction: opening waves and inversion of frictional force, Tribol. Lett
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Emergence of an opening wave in Coulomb’s friction law at the
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Emergence of an opening wave in Coulomb’s friction

Emergence of an opening wave in Coulomb’s friction law at the
interface between an elastic layer and a rigid flat"
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[1] V.A. Yastrebov, 2016, Sliding without slipping under Coulomb friction: opening waves and inversion of frictional force, Tribol. Lett.
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Non-uniform contact pressure

m Stability of the sliding depends on the local contact pressure
distribution® p(x, )

m Macroscopic scale:
pressure depends on the shape of contacting solids, on loads,
pore pressurew and material behaviour

m Microscopic scale:
pressure depends on roughness and on material behaviour

Macroscopic scale Microscopic scale

Contact pressure

Surface height

[1] Viesca, R. C., Rice, J. R., 2012. Nucleation of slip-weakening rupture instability in landslides by localized increase of pore pressure. J Geophys Res
[2] Garagash, D. I, Germanovich, L. N., 2012. Nucleation and arrest of dynamic slip on a pre fault. ] Geophys Res
[3] Ciardo F,, Lecampion B., 2017. Effects of in-situ stress variations along faults on fluid induced seismicity. EGU proceedings

More generally, on interface tractions.
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Frictional law

m Slip weakening friction law

=1 ERg,ifd<d,
A otherwise,

where f;, f; are the static and kinetic coefficients of friction,
respectively, and d, is the characteristic slip length.

m Simplified form of a more general rate-and-state friction

Friction

1, static
friction

1 kinetic
friction

d. slip
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Problem set-up

m Pressurized o)), and sheared 7" interface between two similar?

elastic E, v haIf—planes

m Plane strain formulation
Case 1: parabolic pressure profile (. o)

X

l Frictional interface f;, f, d.
Tl)

L
Elastic half-planes E,v

X

Case 2: localized pressure valley (/,0,.Ac)

ZCan be generalized for dissimilar solids [1] J.R. Rice (1988), Elastic Fracture Mechanics Concepts for Interfacial Cracks, J. Appl. Mech.
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Slip-stability analysis

m Consider situation that slip-weakening zone is localized near slip
edges (small scale yieldingm assumption)

ugip(x) >dcinx € (-a+ea—¢€), e<a

. 23]
otherwise, see

m Critical energy release rate

Gelo) = 3Aclfs = o ()

m Energy release rate

o 2\K2
Gla) = (1 LE)KH(a)

[1] Palmer & Rice, The growth of slip surfaces in the progressive failure of over-consolidated clay, 1973, Proc. Royal Soc. London 332
[2] Campillo & Ionescu, Initiation of antiplane shear instability under slip dependent friction, 1997, J. Geophys. Res. 102
[3] Uenishi & Rice, Universal nucleation length for slip-weakening rupture instability under nonuniform fault loading, 2003, J. Geophys. Res. 108
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Slip-stability analysis II

m Stress intensity factor"":

1 a v_/
K= oV - f fko—w<x>%dx

ambient shear

residual frictional shear

m Introduce function 7:

¥ > 0, unstable slip,
F = Gla) - Gula) - unstable slip .
¥ <0, no spontaneous slip

m Search stable E < 0 and unstable 8—T >0rootsof ¥ =0

da oJa

[1] Erdogan, E, 1962. On the stress distribution in plates with collinear cuts under arbitrary loads, Proc. 4th US Nat. Cong. Appl. Mech. 1.
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Model parameters

m [sotropic homogeneous half-spaces in plane strain (typical
granite)[l'zl :
Shear modulus p = 30 GPa, Poisson’s ratio v = 0.25
m Friction parameters:
- static friction f; = 0.8
- kinetic friction f; = 0.6
- weakening distance d, = 450 um

m Valley pressure:
0o € [10,300] MPa as pressure = 28 MPa/km X depth

[1] Rummel, F, Alheid, H., Frohn, C., 1978. Dilatancy and fracture induced velocity changes in rock and their relation to frictional sliding.
In: Rock Friction and Earthquake Prediction

[2] Uenishi, K., Rice, J. R, 2003. Universal nucleation length for slip-weakening rupture instability under nonuniform fault loading. Journal
of Geophysical Research: Solid Earth
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Parabolic pressure valley




Stability equation

Case 1: parabolic pressure profile (rx,0)

-0y,

m Pressure distribution: 0, = o + T

m Notations 7 = fy0o, Tk = fr00, Ts = fs00
m Stress intensity factor: Ky = (79 — froo — kaﬂz /4)Vma
Ki>0 & a<24(t0—t)/fix.
m Consider a normalized yield function:
2F ~ ~
—————— =G(a) — G(a
df(To(fs —fk) @ @

V.A. Yastrebov | MINES ParisTech, France 37/58



Graphical representation

4.0
35 (f"(“)} k=10 kPa/m?
' G(a)
30| (j"(“)} x =1 kPa/m’
=== G(a)
2.5 -
s G(a)
0 _
= 2.0 —
3
wy
1.5
1.0 B
unstable
0.5
002, aext dy 80 100

Crack half-length, a (m)

Note, G, corresponds to a frictionless case.
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Resulting equation and asymptotics

m Search for roots of:

_2ma(1 = vt — filoo + xa? /4)]? - (1 . Kﬂ2)

G@) - Gulo) = e =0

200

m In the limit of a flat stress distribution « — 0, we obtain a unique
solution:
o pd(Ts — )

(1= v)(to — w)?’

n

which is nothing but Andrews’ critical nucleation lengthm.
m If 75 = 7, this nucleation length reduces to

0.3183ud. 0579,
Dile=t, ¥ T )t — 1)~ (= v)(1s — 70)
~——— —
from”

[1]].D. Andrews, 1976. Rupture Propagation With Finite Stress in Antiplane Strain, ]. Geophys. Res., 81
[2] Uenishi & Rice, 2003. Universal nucleation length for slip-weakening rupture instability under nonuniform fault loading, J. Geophys. Res. 108
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Some examples

m Normalized energy release rate G(a) and its critical value G.(a)

4.0,

3.5

x =10 kPa/m?

w
o

N
%]

N
o

G.(a), G(a)

0 20 40 60 80 100

Crack half-length, a (m)
o9 =10 MPa, fo = 0.7
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Some examples

m Normalized energy release rate G(a) and its critical value G.(a)

4.0,

3.5 — x =1.0 kPa/m’

w
o

N
%]

N
o
|
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Some examples

m Normalized energy release rate G(a) and its critical value G.(a)

4.0,

3.5 — x =1.0 kPa/m’

w
o

N
%]

G.(a), G(a)
l

\

/ unstable

0 20 40 60 BO 100

Crack half-length, a (m)
o9 =10 MPa, fo = 0.7
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Some examples

m Normalized energy release rate G(a) and its critical value G.(a)

4.0
— Kk =0.5 kPa/m?>
3.5 — k=1.0 kPa/m>
k =3.5 kPa/m?>
3ol k=10 kPa/m?
_ - ™~
]
~ 5|
ILD 2.5
-
\
Q‘_: 2.0 X :
&) / AN
1.5 4 3 \\ ~ \
/ . \
) / /4/
' 7 P A
\\ \“
0.5 \ X
0% 20 0 %0 80 100

Crack half-length, a (m)
o9 =10 MPa, fo = 0.7
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Approximate analysis: possibility of unstable slip?

m Neglect fifth order term:

2F ~ ~2 =3
——— ~ A - A" - Az’ -1 =
d(;(TS — "L'k) 14 20 34 0
where i = a/d. and
As = (1 = v)fexd?(to — Tk), A, = @, A = (1 - v)(to — )
ZH(TS - Tg) 200 /vl(Ts - Tk)

m Search for 97 /da = 0, we obtain A; — 2A,i — 3A33% =0

u(Ts — tx) 14 67%fi(1 = v)?(19 — T¢)®
3nfroo(1 —v)(To — Tk) z(fs _fk kd%

ﬁf:

Normally, it is »1
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Approximate analysis: possibility of unstable slip?

m Neglect fifth order term:

2F

— = N AG-AP AP —1=0
d(te— 1) T T A

where @ = a/d, and

(1 = v)fixd?(to — Tx) wed? (1 —v)(to — 1%)?
’ AZ = 5 Al =

2#(75 - Tg) 200 [vl(Ts - Tk)

m Search for 97 /da = 0, we obtain A; — 2A,i — 3A33% =0

Az =

2(to — k)

a ~
! 3xcfi
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Approximate analysis: possibility of unstable slip?

m Neglect fifth order term:

25 - ) =3
— 2 A - A" - Az’ -1=0
Aoz, - T "
where 7 = a/d. and
s (1 = v)fixd?(to — k) _xd? ~ (1 —v)(to — T)?
T 2u(t-m) TP 200 T ()

m Search for 97 /da = 0, we obtain A, — 2A,i — 3A53% =0

2(To — Tx)
3xcfi

ar =

m Then the unstable slip (# (2;) > 0) is possible if:

1/3

(oN)
u

Qv

|3(/[s _fk)z ) Kd? ) (2fx +f0)2
8 (1—=vyu  (fo—fi)°
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Approximate analysis: possibility of unstable slip?

m Minimal pressure o) needed to have unstable slip

0.030 7/ approximate
sves eXact
0.025 l
8
l J o
0.02
3
~
o
0.015 2
b 13
=02 v=0.4 f=0.6, 1=0.7
0.010)
13
. 9
0.005| ! !
¢
s
o"o
0.4 0.6 07 08

Ty

. .
For average granite properties :

Poisson’s ratio v = 0.25, shear modulus 11 = 30 GPa,

friction f; = 0.8, fx = 0.6, and d, = 450 um

[1] Uenishi & Rice, Universal nucleation length for slip-weakening rupture instability under nonuniform fault loading, 2003, J. Geophys. Res. 108
47/58
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Approximate analysis II: arrest length

m Maximum of energy release rate JG/da = 0:

/Go(fo - fv)
Oow =2\ — 27—
Sxfi

m If we assume that this maximum is located on the mid-way
between two roots: a.,, ~ (a, + a5)/2

m Then the arrest length is given by:

RN LI —f) (fs — fi)de M
s 5xf; (1l —v)(fo — fk)*> 0o

V.A. Yastrebov | MINES ParisTech, France 48/58



Approximate analysis II: arrest length

m Colours correspond to the region of unstable slip for different

pressure curvatures K

=100 kP

o, (MPa)

For average granite properties and fy = 0.65

+x = 1 MPa/m?

250 300

50 100
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Approximate analysis II: arrest length

m Colours correspond to the region of unstable slip for different
pressure curvatures K

For average granite properties and fy = 0.65
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Intermediate conclusions

Kx?
m For a pressure valley: 0,, = 0o + -
m Unstable slip is possible if:
1/3

o0 o [3(}2 _fk)2 ' Kd? . (2f« -+-f0)2
H = 8%y (1- V)21“ (fo = fr)®

m Unstable slip starts at:

pde(Ts — Tk)
ay =
(1 = v)(to — )?

m Unstable slip arrests at:

0~ 4 aolfo — fk) _ (fs —fi)de M
o 5«fk (1 —v)(fo — fx)*> 0o
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Localized pressure valley




Set-up 2

Case 2: localized pressure valley (1,0,,Ac)
-0

yy
oy+Ac
0y
2 X
m Pressure distribution:
\2
8A0 (%) ,if x| < A/4
o) =00+ Ac (L -8 —1) |, if A/4 < |x| < A/2
Ao ,if x| > A/2,

V.A. Yastrebov | MINES ParisTech, France 53/58



Stress intensity factor

m As previously:
1 7 Va+x
Ky(a) = to Vra — Oyy(¥) ———d
n =To mz ffk y/( )\/—

m Then

< naty — J1(a, a)> ifa<A/4,

= (Vmato - Ji(A/4,0) - J2(a,a)), ifA/4<a< A2
(Vrato ~1i(1/4,0) = Ta(A/2,0) = Js(a, ), ifa> A2,

where (x) = max{0, x}

Kir(a

! 2 e
Ji(,a) = 7 [, [a“ +8A0 (%) ] VS dx,

—,\_-L 1
Jo(l,a) = ’( [ Fa(x,a)dx + j Fo(x,a)dx}, for AJ4 <1< A/2,

-1 \/4
where F5(x,a) = [(uq - Ag) + 8¢ (\\‘l - %)J z?,

-A/2
Js(l,a) = ’T { f F3(x,a)dx + j Fg(,\’,ﬂ)d\} forl > A/2, with F3 = (0¢ + Ao) :/;+:

A2
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Stress intensity factor 11

J1(a,a) = fi Na (00 + 4A0a*/12),

2
Ji(A/4,a) = 2f; oy + 220F arcsin(i) A9 ez = 12
/‘\2 4a 4/\

2(a,a) = 2f 4| — [(oo - Ao [1 + 4a° /AZ]) (E — arcsin ;tz) + 7Ag V1642 — /\2]

4A
J2(A/2,a) = 2f \/>

AO
4 41

[a U A
J3(a,a) = 2f; 00 + Ao) [ 5 ~ arcsin Z]
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A A
(G() Ao [1 + 4512//\2]) (arcsin 2/—[2 — arcsin @) +

(7 V1622 — A2 — 12 Vaa? — /\2)]



Stability analysis
m Equating G and G, gives:

25 _ - - 21-) o oy(a)
deoolfs —fe) G@) = Gela) Kij(a)

~ Ed.oo(fs — fr) 00
Only numerically solved...

=0

m Different scenarios:
No roots
One root
Two roots
Three roots
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Scenario 1

m Equation G — G, = 0 does not have a solution

2.
--- Stable slip, A=50 m, ¢, =6.0 MPa, Ac=1.0 MPa
Stable slip, A=70 m, ¢, =7.0 MPa, Ao =2.0 MPa
20 Stable slip, A=80 m, ¢, =8.0 MPa, Ac=3.1 MPa
—
3
G
. P
= e
—
S ) B
10} ’ h
0.5
o 0 20 s 0 40 50 60 70
Crack half-length, a (m)
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Scenario 2

m Equation G — G, = 0 has one root (ultimately unstable)

3.0 -
2.5
s
2.0 ey Shee
wli
—~ Y
ORI
1O) e
~ 1 s et
s 1 i 8 s
S R N PP
\—: n RO -
"
O] i
1o
"
"
0.51"
N --+ Unstable slip, A=70 m, ¢, =12.0 MPa, Ac=1.7 MPa
i -~ Unstable slip, A=85 m, 0, =10.0 MPa, Ac=1.1 MPa
b Unstable slip, A=100 m, ¢, =11.0 MPa, Ac=1.5 MPa
005 20 20 60 80 100 120 140 160
Crack half-length, a (m)
58/58

V.A. Yastrebov | MINES ParisTech, France



Scenario 2

m Equation G — G, = 0 has one root (ultimately unstable)

3.0
-- Unstable slip, A=50 m, ¢, =5.0 MPa, Ao =0.5 MPa
-~ Unstable slip, A=50 m, o, =4.0 MPa, Ac =0.45 MPa
Unstable slip, A=50 m, ¢, =6.0 MPa, Ac =0.55 MPa
2.5
2.0 . .
—~ ,”
d ”,
~— L4
O e
2 15 et
S
~ e
® o
O L.t
Lo
[ R - et T0
/L sooo
1,,
3
v
o 20 40 60 80 100 120

Crack half-length, a (m)
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Scenario 3

m Equation G — G, = 0 has two roots (ultimately stable)

Stable slip, A=50 m, ¢, =12.0 MPa, Ag=2.0 MPa

Stable slip, A=60 m, ¢, =8.0 MPa, Ac=1.5 MPa
Stable slip, A=100 m, o, =14.0 MPa, Ag=2.34 MPa

0 20

V.A. Yastrebov | MINES ParisTech, France

P 60 80 100
Crack half-length, a (m)
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Scenario 4

m Equation G — G, = 0 has three roots (ultimately unstable)

3.0
--+ Unstable slip, A=100 m, ¢, =10.0 MPa, Ac =1.48 MPa
--+ Unstable slip, A=100 m, ¢, =9.7 MPa, Ac=1.44 MPa
e Unstable slip, A=100 m, ¢, =9.4 MPa, Ao =1.4 MPa
250
" ‘\‘.
uo
wl o\
w0
w0
w0
2.0y
— . \
3 . X
yad L] A1)
1G] :
~ 15t &
—~ . \
S :
~ . 8 -7
o . N I ]
O . e — —— R
: e —
B e e
v
.
:
:
'
0.50
0.0 50 100 150 200 250 300

Crack half-length, a (m)
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First result

m Stress intensity factor

Ky = Vraty — [1(A/4,a) — J2(A/2,a) — J5(a, a)

m It can be shown that for a/A > 1:

Ji(A/4,a) ~1/Na,  Ja(A/2,a) ~ 1/ Va

m Then fora/A > 1:
Ky = Vma[fyoo — filoo + Ao)]]

m Readily the condition for ultimately unstable slip can be derived:

Ao fo—fk

— <
(o)) f/(
m The corresponding slip length
_ lle[(fS _ﬁ\’)(l +A(7/(70)
noo(1 = v)[fo — fi(1 + Aa/oo)]?
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Effect of the pressure-valley depth Ao

m Stability map for op = 10 MPa, fy = 1.2f, fr = 0.6, f; = 0.8

|
i
' Stable slip [Jll Unstable slip

Approximate solution, Eq.(*)

---- Boundary of possible ultimately
unstable slip, Eq. (**)
e  Accurate solution

Slip length, a/X

10 0.2 05 0.6

0.3 0.4
Valley depth, Acg/o,
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Effect of the minimal pressure o

m Stability map for og = {3, 5, 7, 15} MPa, fo = 1.2f;, fr = 0.6, f, = 0.8

10" g e 0'0:3 MPa
e 0,="5 MPa
° g,=7 MPa
: s 0,= 15MPa
-

10

N
~,
Do

a=22

\
> T

Slip length, a/A

\\/

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Valley depth, Ac/o,
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m The slip length given by

P pdc(fs — fi)(1 + Ac /o)
" ool = v)[fo — fu(l + Ao/ap) 2

represents only the upper limit for the ultimately unstable slip
length

m For Ac/og — (fo — f)/fr), slip length a, diverges as
ay ~ [fO _fk(l + A(7/(70)]72

m Need a more accurate expression, which requires analysis of

i
oa

where Kii(a) = ( Vaat = Ji(A/4,a) - J2(A/2,4) - Jx(a, 1))

=0
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Conclusions

m Some quantitative (approximate) results were obtained for two
cases of non-uniform pressure distributions

parabolic
localized pressure valley

Case 1: parabolic pressure profile (x,5,) Case 2: localized pressure valley (/.0,.A0)

0y

m s unstable slip possible? answered for parabola
m When does the unstable slip arrest? answered for parabola

m What is the necessary condition for the slip to be ultimately
unstable? answered for valley
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Thank you for your attention!
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