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Motivation

Roughness

Roughness topologies play important role in contact mechanics (friction,
adhesion, etc...)

Self-affinity is often used to describe roughness

The simplest possible 3D roughness is bi-sinusoidal
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Description of the solver

Stanley and Kato

Variational approach

. o :
i = f/pu(p)ds—}—/ B
2 ) S
>0 1/ dS =
P = Ao SP = po

SQP approach

— objective function
— orthogonality

Vf=u+g

Enforce [ pdS = Aopo by
dichotomy

Fourier space computation of
influcence functions
Convergence depends on #points




The surface
double sin wave

Problem settings

Isotropic material E*
small deformations

Frictionless, non-adhesive
contact @
Discretization 4096° points Q
Periodic boundary conditions
200 load steps

until full contact

Johnson, Greewood, Higginson. z(x,y) = Bcos(2mx/)cos(2my /)
Int.J.Mech.Sci. 27,  1985.
Krithivasan, Jackson. Tribol.Lett.
27, 2007
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Contact area evolution
Analytic asymptotes ‘
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Contact area evolution

@ infinitesimal contact

Hertz theory
Curvature is R = 47°B /)
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Pressurized crack assumption
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Contact area evolution
Comparison with simulation results

pressurized
crack

Convexity change
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Contact area variation has 2
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Contact area fraction, A’

Numerical restrictions did not
provide intermediate points 0 s s s ‘

Why is mean pressure droping? Normalized pressure, p'




Contact area evolution
Comparison with simulation results ‘

Convexity change 0l |

Contact area variation has 2
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Why is mean pressure droping?




Shape of the contact area

Shape of the contact zone

Initially hertzian
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Shape of the contact area

A2

Shape of the contact zone
Initially hertzian

Becomes square-like : Loss of
convexity

Merging of contact zones

Contact area grows more

rapidly that pressure




Shape of the contact area
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Shape of the contact area

07 T T T T
. B
EENY
*g o6 B 4
-
§ 205 A 1
L O
= &

04 . 0 . .

0 02 0.4 06 0.8 1
Contact area fraction, A’

o &

(PrPETTES



Shape of the contact area
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Shape of the contact area
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Contact perimeter

Compactness of contact area

Perimeter evaluation

S = #-contact transitions

Compactness evaluation
- S

c= VA

Ccircle == 2ﬁ

quuare =4




Contact perimeter
Compactness of contact area

4.5

C,

square 4

Ceiree 35

Compactness

b e
1
4
. /’
.
P
/;
s
."’
I Non-corrected
r/ L SN2AT
)
|/ © SWAI-A)
;
i
Li
. . . .
0 04 06 08

0.2
Contact area fraction, A’

>/

-

Area expansion ~ Pressure
transition

Gap closure

(PrPETTES



Contact perimeter

Perimeter evaluation

S = #-contact transitions

Compactness evaluation
- S

c= VA

Ccirc/e == 2ﬁ

quuare =4

Compactness of contact area

Properties of the perimeter
Wrong if curved

Exact if square

Correction of the perimeter
Sd

> = A

S? the “discrete” perimeter

n(A’) interpolates from circle
to square compactnesses




Contact perimeter
Compactness of contact area
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Contact pressure

Westergaard
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Contact pressure

Westergaard

Normalized pressure, p/p*
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Contact pressure

Simulation pressure profiles

Fits the assymptotic values

Junction cancels the pressure profile slope

Numerical results
— Fit Westergaard's
solution

Normalized pressure, p/p*
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Contact pressure

Simulation pressure profiles

Fits the assymptotic values

Junction cancels the pressure profile slope

Normalized pressure, p/p*
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Contact pressure

Simulation pressure profiles

Fits the assymptotic values

Junction cancels the pressure profile slope
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Contact pressure

Simulation pressure profiles

Fits the assymptotic values

Junction cancels the pressure profile slope

Normalized pressure, p/p*
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Probability density of contact pressure

PDF of pressures

PB) = 4 [ 85— plx.y))eidy

Property

[ P(e)d5 = Ao/ A0 =1

Jp

Numerical measure
Decomposition in bins

Intractable PDF function at the
limit to zero




Probability density of contact pressure

Hertz analytic solution at small contact

Hertz:

Full contact:

Probability density of
contact pressure, P(p/p)
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Probability density of contact pressure

Evolution with load ‘
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Probability density of contact pressure

Evolution with load

Probability density of contact pressure, P(p/p)
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Implication for Persson’s model

Persson’s model (elastic case)
Manipulate the Probability density function P(p, ¢)
as a Function of the applied pressure p and magnification ¢

Under full contact assumptions we obtain

9P(p,¢) _ 19°P(p,¢)

E1% 2 0%

where V is the variance of the pressure distribution.

V is approximated by Persson as the variance achieved at full contact
(elastic correlation to the heights profile):

TE*
2

V:%Fm@y:

Greenwood and Manners. Some observations on Persson’s diffusion theory of
elastic contact. Wear 261, 2006




Implication for Persson’s model

Persson’s assumptions

Persson’s assumptions
In the derivation of the diffusion equation: full contact is assumed

Need for a boundary condition to precise solution:

P(plp.p)I(AIA)

Sim. Persson

Normalized probability density

0 0.5 1 15 2 25 3 35 4 45 5
Normalized contact pressure, p/p
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Implication for Persson’s model

Persson’s assumptions

How is the wavy surface result supposed to impact
Persson’s assumption 7
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Implication for Persson’s model

Persson’s assumptions \

Splitting the contact spots

P() = & / 5(5 — plx, y))dxdy




Implication for Persson’s model
Persson’s assumptions

Splitting the contact spots

P(F) = & / 35 — plx. )y + 2= 25(p)
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Implication for Persson’s model

Persson’s assumptions |

We are interested in the region 0 < p < e:




Implication for Persson’s model

Persson’s assumptions

We want to investigate the limit when ¢ — 0:

P(B) = 4 ero

where ['(pg) is the pdf of patches of contact
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Implication for Persson’s model

Persson’s assumptions

One should estimate the spatial density of asperity merging sites D(p;) for
which T(pg) # 0 :

D(pg)Ao
> T(po) = D(po)T (po)

i

Missing ingredients

I'(pg) the average PDF of pressure for merging asperities

D(pg) the spatial density of asperities merging at applied pressure pg
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Implication for Persson’s model

Persson’s assumptions
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Conclusion

Overlooked particularity of bi-sinusoidal surface

Area of contact: change of convexity

Mean pressure: unexpected drop
Perimeter: correction of numerical results is needed
At full contact: P(0") # 0

V.A. Yastrebov, G. Anciaux, J.F. Molinari, The contact of elastic regular wavy
surfaces revisited. Tribol.Lett. 56, 2014

Future work

Is it generalizable that P(0T) £ 0 ?
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