Mechanical contact between rough elastic-plastic solids: scale effect in asperity deformation

Vladislav A. Yastrebov, Samuel Forest

MINES ParisTech, PSL Research University, Centre for Material Sciences CNRS UMR 7633, Evry, France

Society of Engineering Science 52nd Annual Technical Meeting Texas A&M, College Station, USA October 26–28, 2015

#Introduction

Contact/friction applications

Natural and industrial surfaces are *rough*:

- processing
- polishing
- coating
- microstructure
- surface energy
- deformation
- aging
- environment

Natural and industrial surfaces are *rough*:

- processing
- polishing
- coating
- microstructure
- surface energy
- deformation
- aging
- environment

Fig. Epitaxial surface growth [3,4]

J.Polák, J. Man & K. Orbtlík, Int J Fatigue 25 (2003)
 V.K. Tolpygo, D.R. Clarke, Acta Mat 52 (2004)
 M. Einax, W. Dieterich, P. Maass, Rev Mod Phys 85 (2013)
 J.R. Arthur, Surf Sci 500 (2002)

Natural and industrial surfaces are *rough*:

- processing
- polishing
- coating
- microstructure
- surface energy
- deformation
- aging
- environment

Roughness affects:

- stress-strain state
- friction
- wear
- adhesion
- fluid flow
- sealing
- energy transfer

Fig. True contact area and stress fluctuations

Natural and industrial surfaces are *rough*:

- processing
- polishing
- coating
- microstructure
- surface energy
- deformation
- aging
- environment

Roughness affects:

- stress-strain state
- friction
- wear
- adhesion
- fluid flow
- sealing
- energy transfer

Fig. True contact area and stress fluctuations

Natural and industrial surfaces are *rough*:

- processing
- polishing
- coating
- microstructure
- surface energy
- deformation
- aging
- environment

Roughness affects:

- stress-strain state
- friction
- wear
- adhesion
- fluid flow
- sealing
- energy transfer

Fig. Numerical simulation of airflow around a (dimpled) golf ball [5]

[5] C.E. Smith, PhD thesis (2011)

Natural and industrial surfaces are *rough*:

- processing
- polishing
- coating
- microstructure
- surface energy
- deformation
- aging
- environment

Roughness affects:

- stress-strain state
- friction
- wear
- adhesion
- fluid flow
- sealing
- energy transfer

Fig. Fluid passage through free volume between rough surfaces

- Fractal (self-affine) roughness
- Power spectral density (PSD) $\Phi(k) \sim k^{-2(H+1)}$

k is a wavenumber, *H* is the Hurst exponent.

- **Gaussian**/non-Gaussian height distribution *P*(*h*)
- Isotropic/anisotropic surfaces

Fig. Power spectral density, geological scales

Adapted from [4] Renard, Candela, Bouchaud, Geophys. Res. Lett. 40 (2013)

- Fractal (self-affine) roughness
- Power spectral density (PSD) $\Phi(k) \sim k^{-2(H+1)}$

k is a wavenumber, *H* is the Hurst exponent.

- **Gaussian**/non-Gaussian height distribution *P*(*h*)
- **Isotropic**/anisotropic surfaces

- Fractal (self-affine) roughness
- Power spectral density (PSD) $\Phi(k) \sim k^{-2(H+1)}$

k is a wavenumber, *H* is the Hurst exponent.

- **Gaussian**/non-Gaussian height distribution *P*(*h*)
- **Isotropic**/anisotropic surfaces

- Fractal (self-affine) roughness
- Power spectral density (PSD) $\Phi(k) \sim k^{-2(H+1)}$

k is a wavenumber, *H* is the Hurst exponent.

- **Gaussian**/non-Gaussian height distribution *P*(*h*)
- Isotropic/anisotropic surfaces
- Characteristics:
 - $\sqrt{\langle h^2 \rangle}$ std heights
 - $\sqrt{\langle |\nabla h|^2 \rangle}$ std slope (surface gradient)
 - $\alpha = m_{00}m_{40}/m_{20}^2$ breadth of the spectrum (Nayak's parameter^[B]),

spectral moments $m_{pq} = \iint_{-\infty}^{\infty} k_x^p k_y^q \Phi(k_x, k_y) dk_x dk_y$

Random process theory

[A] Longuet-Higgins, Philos. Trans. R. Soc. A 250:157 (1957)
 [B] Nayak, J. Lub. Tech. (ASME) 93:398 (1973)
 [C] Greenwood, Wear 261: 191 (2006)
 [D] Borri, Paggi, J. Phys. D Appl Phys 48:045301 (2015)

Yastrebov & Forest

Yastrebov & Forest

Roughness enhancement

Data interpolation (Shanon, bi-cubic Bézier surfaces) Experimental Smoothed (enriched)

Fig. Bi-cubic Bézier interpolation of an experimental rough surface

[1]Hyun, Robbins. *Tribol. Int.* (2007) [2] Yastrebov, Durand, Proudhon, Cailletaud. *C.R. Mécan.* (2011)

Yastrebov & Forest

Asperity characteristics

In theory

- Isotropy of surface does not imply isotropy of asperities
- Unbounded surface spectrum ⇒ divergence of mean curvature

 $\bar{\kappa} = \sqrt{m_4} \sim k_s^{2-H} \xrightarrow{k_s \to \infty} \infty$

Longuet-Higgins, Philos. Trans. R. Soc. A 250:157 (1957)
 Nayak, J. Lub. Tech. (ASME) 93:398 (1973)

[3] Greenwood, Wear 261: 191 (2006)

In reality

- continuum mechanics and fractal description fail at atomic scale
- brittle crystals → sharp corners (e.g. rocks, ceramics)

Yastrebov & Forest

• Example of real curvature distribution

• Roughness of CuZn electroplated with Ni (1 μ m) and Au (1 μ m)

#Mechanics

• Direct BEM / FEM analysis

- 3D simulations
- More or less accurate roughness representation
- Fast BEM^[1,2,3]
 - elastic
 - homogeneous
- Slow FEM^[4,5]
 - arbitrary material model
 - geometrical-nonlinearity
 - heterogenity
- [1] Stanley & Kato. J Tribol (1997)
- [2] Plonsky & Keer. Wear (1999)
- [3] Liu, Wang, Liu. Wear (2000)
- [4] Pei, Hyun, Molinari, Robbins. J Mech Phys Solids (2005)
- [5] Yastrebov, Durand, Proudhon, Cailletaud. CR Mecan (2011)

True contact area

Contact pressure (zoom on 1/16 of the surface) [6] Yastrebov, Anciaux, Molinari. Int J Solids Struct (2015)

Yastrebov & Forest

• Direct BEM / FEM analysis

- 3D simulations
- More or less accurate roughness representation
- Fast BEM^[1,2,3]
 - elastic
 - homogeneous
- Slow FEM^[4,5]
 - arbitrary material model
 - geometrical-nonlinearity
 - heterogenity
- [1] Stanley & Kato. J Tribol (1997)
- [2] Plonsky & Keer. Wear (1999)
- [3] Liu, Wang, Liu. Wear (2000)
- [4] Pei, Hyun, Molinari, Robbins. J Mech Phys Solids (2005)
- [5] Yastrebov, Durand, Proudhon, Cailletaud. CR Mecan (2011)

FE simulation of rough contact^[5]

Yastrebov & Forest

• Direct BEM / FEM analysis

- 3D simulations
- More or less accurate roughness representation
- Fast BEM^[1,2,3]
 - elastic
 - homogeneous
- Slow FEM^[4,5]
 - arbitrary material model
 - geometrical-nonlinearity
 - heterogenity
- Stanley & Kato. J Tribol (1997)
 Plonsky & Keer. Wear (1999)
- [3] Liu, Wang, Liu. Wear (2000)
- [4] Pei, Hyun, Molinari, Robbins. J Mech Phys Solids (2005)
- [5] Yastrebov, Durand, Proudhon, Cailletaud. CR Mecan (2011)

Yastrebov & Forest

• Near-surface vs bulk deformation

Material aspects

- Cold worked surface + recrystallized: smaller grains near the surface, Hall-Petch effect
- Thin coating films: nanograined, confined plasticity, Hall-Petch effect
- Oxides: brittle hard films

Geometrical aspects

- Roughness of all nature
- Indentation by asperities: confined plastic zone, high plastic strain gradients

[1] Nix, Gao. J Mech Phys Solids (1998).

Yastrebov & Forest

Nix, Gao. J Mech Phys Solids (1998).
 Feng, Nix. Scripta Mater (2004).

[1] Nix, Gao. J Mech Phys Solids (1998).

[2] Feng, Nix. Scripta Mater (2004).

[3] Qui, Huang, Nix, Hwang, Gao. Acta Mater (2001).

- [2] Feng, Nix. Scripta Mater (2004).
- [3] Qui, Huang, Nix, Hwang, Gao. Acta Mater (2001).

[1] Nix, Gao. J Mech Phys Solids (1998).

[2] Feng, Nix. Scripta Mater (2004).

[3] Qui, Huang, Nix, Hwang, Gao. Acta Mater (2001).

Nix, Gao. J Mech Phys Solids (1998).
 Feng, Nix. Scripta Mater (2004).
 Out Human Dia Mater Gao. And Mater (2014).

[3] Qui, Huang, Nix, Hwang, Gao. Acta Mater (2001).

[4] Swadener, George, Pharr. J Mech Phys Solids (2002).[5] Gao, Larson, Lee, Nicola, Tischler, Pharr. J Appl Mech (2015).

• Onset of yielding

Hertz contact: body of revolution Onset of plasticity for pressure $p_{\gamma} = 1.6\sigma_{\gamma}$ Associated force $F_Y = \frac{1.6^3 \pi^3 R^2}{6} \left(\frac{\sigma_Y}{F^*}\right)^2 \sigma_Y$ Associated contact radius $a_Y = \frac{1.6\pi R}{2} \frac{\sigma_Y}{F^*}$ Plastic flow starts at depth $z_{\rm Y} \approx 1.21 R \frac{\sigma_{\rm Y}}{F^*}$ • Example: golden asperity $R = 10 \ \mu m$ $E^* \approx 96 \text{ GPa}, \quad \sigma_v \approx 140 \text{ MPa}, \quad d \approx 4.1 \text{ Å}$

 $F_{\rm Y} \approx 3.8 \ \mu {
m N}, \quad z_{\rm Y} \approx 18 \ {
m nm}, \quad a_{\rm Y} \approx 36 \ {
m nm}$

 $z_Y \approx 45d$, $a_Y \approx 115d$

Yastrebov & Forest

• Cosserat continuum

- Field variables (displacement & rotation): u, ω
- Small deformation tensor: $\varepsilon = \nabla u + {}^{3} \epsilon \cdot \omega$
- Torsion-curvature tensor: $\kappa = \nabla \omega$
- Elasticity: $\sigma = \lambda \operatorname{tr}(\varepsilon_e) I + \mu(\varepsilon_e + \varepsilon_e^{\mathsf{T}}) + \mu_c(\varepsilon_e \varepsilon_e^{\mathsf{T}}), \quad m = \alpha \operatorname{tr}(\kappa_e) I + 2\beta \kappa_e$

$$l_e = \sqrt{\beta/\mu}$$

Note: $\varepsilon^{\mathsf{T}} \neq \varepsilon, \kappa^{\mathsf{T}} \neq \kappa, \sigma^{\mathsf{T}} \neq \sigma, m^{\mathsf{T}} \neq m$

In non-inertial problems without volume forces and couple-forces, balance of momentum and of moment of momentum:

$$\nabla \cdot \boldsymbol{\sigma} = 0, \quad \nabla \cdot \boldsymbol{m} - \boldsymbol{\varepsilon} : \boldsymbol{\sigma} = 0$$

Plasticity: equivalent stress^[1,2]
$$Y = \sqrt{\frac{3}{2} \left(a_1 s : s + a_2 s : s^{\intercal} + \left[\frac{1}{l_p^2} \right] m : m \right)}$$

Internal lengths: elastic l_e, plastic l_p

R. de Borst, L.J. Sluys, Comp Meth Appl Mech Engin (1991)
 S. Forest, R. Sievert, Acta Mech (2003)

where permutation tensor ${}^{3}\epsilon \sim \epsilon_{ijk} = \begin{cases} 1, & \text{if } \{ijk\} = \{123\} \text{ or } \{231\} \text{ or } \{312\} \\ -1, & \text{if } \{ijk\} = \{321\} \text{ or } \{213\} \text{ or } \{132\} \\ 0, & \text{otherwise} \end{cases}$

Yastrebov & Forest

• Single asperity analysis

Assumptions

- Rigid spherical asperity
- Axisymmetric FE problem
- Generalized Cosserat continuum

Parameters

- Au: E = 96 GPa, v = 0.42, $\sigma_y = 140$ MPa
- $\mu_c = 10\mu, l_e = 100 \text{ nm}, a_1 = 1$
- Indenter radius $R \in [0.002, 2000] \ \mu m$

Objectives

- Study size effect
- Enhance asperity based models for rough contact

• Accumulated plasticity

• Different plastic distribution

 $Displacement \times 5$

Displacement $\times 5$

Indenter radius $R = 20 \mu m$ Max plastic strain $p_{max} \approx 7.5\%$ Indenter radius $R = 2\mu m$ Max plastic strain $p_{max} \approx 11\%$

Yastrebov & Forest

• Displacement–force–contact radius

• Roughness \rightarrow asperities

• Roughness \rightarrow asperities

k_i=16, k_s=128, H=0.8

• Roughness \rightarrow asperities

• Long-range elastic interaction

• Long-range interaction: $\delta_j = \frac{1-\nu^2}{\pi E} \sum_{i=1}^N \frac{F_i}{d_{ij}}$

• Local indentation depth: $u_j = \max\{z_j - z_0 - \delta_j, 0\}$

Force:
$$F_j = F(u_j)$$

Yastrebov & Forest

• Spherical indentation of a rough surface

• Indenter $R = 100 \mu m$

First step towards incorporating scale dependent plasticity in contact behavior of rough surfaces.

Perspectives:

- Experimental validation^[1]
- Frictional contact for Cosserat continuum^[2,3]
- Second-gradient plasticity model^[4,5]
- Clarify scale dependece of spherical indentation [5,6]

[1] Yastrebov, Mballa Mballa, Cailletaud, Noël, Houzé, Proudhon, Testé, IEEE Holm conference (2015).

- [2] Zhang, Wang, Wriggers, Schrefler. Comp Mech (2005)
- [3] Salehi, Salehi. Int J Solids Struct (2015)

[4] Cordero, Forest, Busso, Berbenni, Cherkaoui. Comp Mater Sci (2012)

- [5] Gao, Larson, Lee, Nicola, Tischler, Pharr. J Appl Mech (2015)
- [6] Swadener, George, Pharr. J Mech Phys Solids (2002)

First step towards incorporating scale dependent plasticity in contact behavior of rough surfaces.

Perspectives:

- Experimental validation^[1]
- Frictional contact for Cosserat continuum^[2,3]
- Second-gradient plasticity model^[4,5]
- Clarify scale dependece of spherical indentation [5,6]

Thank you for your attention!

• Effect of the high frequency cutoff *k*_s

• Effect of the high frequency cutoff k_s

• Effect of the high frequency cutoff k_s

and corresponding rough surface (real space) for $k_l = 4$, $k_s = 32$

• Effect of the high frequency cutoff k_s

and corresponding rough surface (real space) for $k_l = 4$, $k_s = 64$

• Effect of the high frequency cutoff k_s

and corresponding rough surface (real space) for $k_l = 4$, $k_s = 128$

• Effect of the lower frequency cutoff k_l for $k_s/k_l = \text{const}$

Fig. Power spectral density (Fourier space) and corresponding rough surface (real space) for $k_l = 1$, $k_s = 43$

• Effect of the lower frequency cutoff k_l for $k_s/k_l = \text{const}$

Fig. Power spectral density (Fourier space) and corresponding rough surface (real space) for $k_l = 4$, $k_s = 171$

• Effect of the lower frequency cutoff k_l for $k_s/k_l = \text{const}$

Fig. Power spectral density (Fourier space) and corresponding rough surface (real space) for $k_l = 12$, $k_s = 512$

Effect of parameters

Effect of parameters:

- *k_l* low frequency cutoff
 representativity/normality^[1,2,3]
- k_s high frequency cutoff
 smoothness and density of asperities
- $\zeta = k_s/k_l \text{ ratio}^{[3]}$ - *magnification*

Nayak's parameter α is the central characteristic of roughness in asperity based mechanical models.

 $\alpha \sim \zeta^{2H}$

- Vallet, Lasseux, Sainsot, Zahouani, Tribol. Int. (2009)
 Yastrebov, Durand, Proudhon, Cailletaud, C.R. Mécan. (2011)
- [3] Yastrebov, Anciaux, Molinari, Phys. Rev. E (2012)
- [4] Yastrebov, Anciaux, Molinari, Int. J. Solids Struct. (2015)

Yastrebov & Forest

Effect of parameters

Effect of parameters:

- *k_l* low frequency cutoff
 representativity/normality^[1,2,3]
- k_s high frequency cutoff
 smoothness and density of asperities
- $\zeta = k_s/k_l \text{ ratio}^{[3]}$ - *magnification*

Nayak's parameter α is the central characteristic of roughness in asperity based mechanical models.

 $\alpha \sim \zeta^{2H}$

- [1] Vallet, Lasseux, Sainsot, Zahouani, Tribol. Int. (2009)
- [2] Yastrebov, Durand, Proudhon, Cailletaud, C.R. Mécan. (2011)
- [3] Yastrebov, Anciaux, Molinari, Phys. Rev. E (2012)
- [4] Yastrebov, Anciaux, Molinari, Int. J. Solids Struct. (2015)

Yastrebov & Forest

• Effect of the ratio of the higher cutoff to mesh density $k_s/(N/L)$

• Effect of the ratio of the higher cutoff to mesh density $k_s/(N/L)$

Yastrebov & Forest

• Effect of the discretisation (single asperity)

Displacement

Fig. Effect of the mesh on mechanical response

 Data interpolation (Shanon, bi-cubic Bézier surfaces) Experimental Smoothed (enriched)

Fig. Bi-cubic Bézier interpolation of an experimental rough surface

[1]Hyun, Robbins. *Tribol. Int.* (2007) [2] Yastrebov, Durand, Proudhon, Cailletaud. *C.R. Mécan.* (2011)

Yastrebov & Forest