Three-level multi-scale modeling of electrical contacts

<u>G. Cailletaud</u>¹, V.A. Yastrebov¹, F.S. Mballa Mballa^{1,2} S. Noël², F. Houzé², H. Proudhon¹, Ph. Testé²

 ¹MINES ParisTech, PSL Research University, Centre for Material Sciences CNRS UMR 7633, Evry, France
 ²Centrale–Supelec, University of Paris–Saclay, Group of Electrical Engineering CNRS UMR 8507, Gif sur Yvette, France

Support by LaSIPS, a Lab Network for System Enginering of Saclay University

> 61st IEEE Holm Conference on Electrical Contacts San Francisco, USA 14 October, 2015

- **Experiments on a sphere–plan system,** low-power (no heating effect)
- 2 Axisymmetrical model for mechanics and electrical conduction (2D-FE)
- **Axisymetrical model and 3D simplified postprocessing** for mechanics and electricity (asperity based)
- **4** Full-scale finite element analysis

• Experimental set-up

- 3 cycles load-unload
- Force-resistance *R*(*F*)
- Low power

- Brass plated by Ni and Au
- Elastic-plastic deformation
- AFM roughness data

• Measurements

- First load → initial plastic flow
- Subsequent cycles → plastic hysteresis
- System resistance $R = R_s + R_c$
- Hertz-Holm estimation

$$R_{c} = \frac{\rho^{*}}{2a} = \frac{\rho^{*}}{2} \left(\frac{4E^{*}}{3rF}\right)^{1/3}$$

 $\begin{array}{l} \rho^* \text{ is the effective resistivity,} \\ E^* \quad \text{is the effective elastic modulus} \\ \rho^* = \frac{\rho_1 + \rho_2}{2}, \quad \frac{1}{E^*} = \frac{1 - v_1^2}{E_1} + \frac{1 - v_2^2}{E_2} \end{array}$

• Measurements

- First load → initial plastic flow
- Subsequent cycles → plastic hysteresis
- System resistance $R = R_s + R_c$
- Hertz-Holm estimation

 $R_{c} = \frac{\rho^{*}}{2a} = \frac{\rho^{*}}{2} \left(\frac{4E^{*}}{3rF}\right)^{1/3}$

 $\begin{array}{l} \rho^* \text{ is the effective resistivity,} \\ E^* \text{ is the effective elastic modulus} \\ \rho^* = \frac{\rho_1 + \rho_2}{2}, \quad \frac{1}{E^*} = \frac{1 - v_1^2}{E_1} + \frac{1 - v_2^2}{E_2} \end{array}$

• How to improve the model $R_c + R_s = fct(F)$?

Improve R_c

2*DFinite Element model* (2*D*-*FE*):

▷Sphere–plane with smooth surfaces, Au and Ni layers ▷Realistic elastoplastic behaviour (Au, Ni, CuZn30, CuBe) **Roughness effect on** R_s

A multi-scale approach using Greenwood's model

▷Axisymmetric model for mechanics and 3D asperity based postprocessing for mechanics and electricity

A full-field approach

▷3D mechanical and electrical Finite Element (FE) solutions on representative surfaces

Oxidation effect on R_s

G. Cailletaud et al.

• Assumptions of the 2D-FE problem

Mechanical simulation

- Axisymmetric contact problem
- Explicit gold and nickel layers (1 μm each)

Electrical simulation

- Same FE mesh
- Assume perfect contact (no potentiel drop at the contact area)

- 90 000 nodes
- Quadratic tri. and quad. elmts
- Element size in the critical area, 0.5 μm

• Material behavior: models

Elastic-plastic model

Yield surface¹:

$$f(\boldsymbol{\sigma}, \boldsymbol{X}, \boldsymbol{Y}) = J_2(\boldsymbol{\sigma} - \boldsymbol{X}) - \boldsymbol{Y} - \sigma_y$$

Von Mises criterion:

$$J_2(\sigma - X) = \sqrt{\frac{3}{2}(s - X) : (s - X)}$$

Plastic strain:

$$\dot{p} = \sqrt{\frac{2}{3}}\dot{\epsilon}_p:\dot{\epsilon}_p,\quad\dot{\epsilon}_p=\dot{\epsilon}-\dot{\epsilon}_e$$

- Isotropic hardening: Y = Q[1 - exp(-bp)]
- Kinematic hardening:

$$\dot{X} = \frac{2}{3}C\dot{\varepsilon}_p - D\Phi(p)X\dot{p}$$
$$\Phi(p) = \phi + (1 - \phi)\exp(-\omega p)$$

 $^{{}^{1}}s = \sigma - tr(\sigma)/3$ is the deviatoric part of the stress tensor.

G. Cailletaud et al.

• Mechanical results of the 2D-FE model

Force-displacement curve

- 1072 load steps
- The first cycle is critical, then steady state

Contours of the equivalent plastic strain field

- No plasticity in the nickel layer and in the CuBe ball
- $\varepsilon^p < 0.1\%$ in gold

Mechanical results of the 2D-FE model

Force-displacement curve

- 1072 load steps
- The first cycle is critical, then steady state

Contours of the equivalent plastic strain field

 No plasticity in the nickel layer and in the CuBe ball

• $\varepsilon^p < 0.1\%$ in gold

G. Cailletaud et al.

Multi-material & multi-scale modeling of electrical contacts

orce (N)

• Electrical calculation with the 2D-FE model

Force-displacement curve

- 1072 load steps
- The first cycle is critical, then steady state

Electrical calculation

- For each step, create an electrical mesh with the four materials and the contact zone defined by the mechanical calculation
- Full field resolution of $\rho \vec{i} = -\nabla U$ with the relevant boundary conditions

Multi-material & multi-scale modeling of electrical contacts

• Influence of the yield stress in brass

Contact radius and electrical resistance versus applied force

G. Cailletaud et al.

• Resulting curves with σ_y =53 MPa

G. Cailletaud et al.

• Multiscale electrical contact

- Macroscopic constriction
 Effect of geometry
- Microscopic constriction

⊳Effect of roughness

 A need to characterize the position and the area of the spots for a given contact area (radius *a*, from 2D-FE)

G. Cailletaud et al.

• Introduction of the surface roughness

Roughness description

Unlike a classical model, the actual roughness is
 ★ anisotropic
 ★ not self-affine
 ★ non-Gaussian

Strategy of the model

- Knowing that the contact size is about 100 μm, extract (17 μm×17 μm) samples from the real surface
- Convert the continuous surface into a list of asperities
- Determine the contact spot number and size

G. Cailletaud et al.

• Multiscale model

Assumptions

- Smooth rigid ball
- Focus on first cycle

Algorithm

- Step 1 is performed once
- Step 2 and 3 repeated for 100 (17μm×17μm) surface samples

[1] Paggi & Ciavarella. *Wear* 39 (2010).

[2] Yastrebov, Durand, Proudhon & Cailletaud. *CR Mécan* 339 (2011).

[3] Greenwood. J Appl Physics 17 (1966).

Three sections in the model

1 2D-FE mechanical analysis

⊳contact pressure, contact area

Iterative model for indentation of *elastically interacting*^[1,2] elastic-plastic Hertzian asperities

⊳contact morphology

3 Greenwood model^[3] for contact resistance

$$R_G = \frac{\rho^*}{2\sum a_i} \left(1 + \frac{2}{\pi} \frac{\sum_{i \neq j} a_i a_j / d_{ij}}{\sum a_i} \right)$$

• Three-level model: asperity model

Elastic-plastic transition: Hertz equation if $F_i/\pi a_i^2 < 3\sigma_y$, otherwise $F_i = 3\sigma_y \pi a_i^2$

■ Iterative computation scheme with elastic interaction between contacting asperities Δz_i ~ ∑_i F_i/d_{ij}

• Three-level model: comparison

- 3-level model yields realistic results
- Valid for light contact forces
- For higher loads, approximation of roughness by asperities is not valid
- The problem of surface state (oxidation ?) is still pending

• Geometry and mesh for the full-scale FE simulation

- Mapped roughness in contact with a rigid sphere
- FE mesh $\approx 1\,500\,000$ dofs

G. Cailletaud et al.

• Results of the full-scale FE simulation

Evolution of the contact pressure

Equivalent plastic strain in gold and brass

G. Cailletaud et al.

• A synthesis of 2D and 3D models

Force-displacement curve

G. Cailletaud et al.

• Comparison of the contact surfaces with the simplified and the full-field models

Force–displacement curve

G. Cailletaud et al.

• Conclusion and prospects

■ 3D-rough far from 2D-smooth !

Different loading curves, different local plasticity in layers

Bad/good results for the simplified multiscale model

⊳Good for the loading curve,

▷Bad for the morphology of the contact surface, that explains its limited validity

Full scale electro-mechanical simulations with adequate material models mandatory for industrial contacts

DElectrical calculations to be made

Thank you for your attention!

G. Cailletaud et al.

Roughness description

- Classical model is inappropriate: *isotropic, Gaussian, self-affine*
- Actual roughness is

 anisotropic not self-affine non-Gaussian

Roughness description

- Classical model is inappropriate: *isotropic, Gaussian, self-affine*
- Actual roughness is
 *** anisotropic
 *** not self-affine
 *** non-Gaussian

26/23

Roughness description

- Classical model is inappropriate: isotropic, Gaussian, self-affine
- Actual roughness is
 *** anisotropic
 *** not self-affine
 *** non-Gaussian

Roughness description

- Classical model is inappropriate: *isotropic, Gaussian, self-affine*
- Actual roughness is
 *** anisotropic
 *** not self-affine
 *** non-Gaussian

• Illustration of asperity flattening

